leocad/common/light.cpp
2012-03-29 01:10:55 +00:00

585 lines
15 KiB
C++

// Light object.
#include "lc_global.h"
#include "lc_math.h"
#include "lc_colors.h"
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include "light.h"
#include "globals.h"
#include "matrix.h"
GLuint Light::m_nSphereList = 0;
GLuint Light::m_nTargetList = 0;
static LC_OBJECT_KEY_INFO light_key_info[LC_LK_COUNT] =
{
{ "Light Position", 3, LC_LK_POSITION },
{ "Light Target", 3, LC_LK_TARGET },
{ "Ambient Color", 3, LC_LK_AMBIENT },
{ "Diffuse Color", 3, LC_LK_DIFFUSE },
{ "Specular Color", 3, LC_LK_SPECULAR },
{ "Constant Attenuation", 1, LC_LK_CONSTANT },
{ "Linear Attenuation", 1, LC_LK_LINEAR },
{ "Quadratic Attenuation", 1, LC_LK_QUADRATIC },
{ "Spot Cutoff", 1, LC_LK_CUTOFF },
{ "Spot Exponent", 1, LC_LK_EXPONENT }
};
// =============================================================================
// CameraTarget class
LightTarget::LightTarget (Light *pParent)
: Object (LC_OBJECT_LIGHT_TARGET)
{
m_pParent = pParent;
/*
strcpy (m_strName, pParent->GetName ());
m_strName[LC_OBJECT_NAME_LEN-8] = '\0';
strcat (m_strName, ".Target");
*/
}
LightTarget::~LightTarget ()
{
}
void LightTarget::MinIntersectDist (LC_CLICKLINE* pLine)
{
float dist = (float)BoundingBoxIntersectDist (pLine);
if (dist < pLine->mindist)
{
pLine->mindist = dist;
pLine->pClosest = this;
}
}
void LightTarget::Select (bool bSelecting, bool bFocus, bool bMultiple)
{
m_pParent->SelectTarget (bSelecting, bFocus, bMultiple);
}
const char* LightTarget::GetName() const
{
return m_pParent->GetName();
}
// =============================================================================
// Light class
// New positional light
Light::Light (float px, float py, float pz)
: Object (LC_OBJECT_LIGHT)
{
Initialize ();
float pos[] = { px, py, pz }, target[] = { 0, 0, 0 };
ChangeKey (1, false, true, pos, LC_LK_POSITION);
ChangeKey (1, false, true, target, LC_LK_TARGET);
ChangeKey (1, true, true, pos, LC_LK_POSITION);
ChangeKey (1, true, true, target, LC_LK_TARGET);
m_fPos[3] = 0.0f;
UpdatePosition (1, false);
}
// New directional light
Light::Light (float px, float py, float pz, float tx, float ty, float tz)
: Object (LC_OBJECT_LIGHT)
{
Initialize ();
float pos[] = { px, py, pz }, target[] = { tx, ty, tz };
ChangeKey (1, false, true, pos, LC_LK_POSITION);
ChangeKey (1, false, true, target, LC_LK_TARGET);
ChangeKey (1, true, true, pos, LC_LK_POSITION);
ChangeKey (1, true, true, target, LC_LK_TARGET);
m_pTarget = new LightTarget (this);
m_fPos[3] = 1.0f;
UpdatePosition (1, false);
}
void Light::Initialize ()
{
m_bEnabled = true;
m_pNext = NULL;
m_nState = 0;
m_pTarget = NULL;
m_nList = 0;
memset (m_strName, 0, sizeof (m_strName));
m_fAmbient[3] = 1.0f;
m_fDiffuse[3] = 1.0f;
m_fSpecular[3] = 1.0f;
float *values[] = { m_fPos, m_fTarget, m_fAmbient, m_fDiffuse, m_fSpecular,
&m_fConstant, &m_fLinear, &m_fQuadratic, &m_fCutoff, &m_fExponent };
RegisterKeys (values, light_key_info, LC_LK_COUNT);
// set the default values
float ambient[] = { 0, 0, 0 }, diffuse[] = { 0.8f, 0.8f, 0.8f }, specular[] = { 1, 1, 1 };
float constant = 1, linear = 0, quadratic = 0, cutoff = 30, exponent = 0;
ChangeKey (1, false, true, ambient, LC_LK_AMBIENT);
ChangeKey (1, false, true, diffuse, LC_LK_DIFFUSE);
ChangeKey (1, false, true, specular, LC_LK_SPECULAR);
ChangeKey (1, false, true, &constant, LC_LK_CONSTANT);
ChangeKey (1, false, true, &linear, LC_LK_LINEAR);
ChangeKey (1, false, true, &quadratic, LC_LK_QUADRATIC);
ChangeKey (1, false, true, &cutoff, LC_LK_CUTOFF);
ChangeKey (1, false, true, &exponent, LC_LK_EXPONENT);
ChangeKey (1, true, true, ambient, LC_LK_AMBIENT);
ChangeKey (1, true, true, diffuse, LC_LK_DIFFUSE);
ChangeKey (1, true, true, specular, LC_LK_SPECULAR);
ChangeKey (1, true, true, &constant, LC_LK_CONSTANT);
ChangeKey (1, true, true, &linear, LC_LK_LINEAR);
ChangeKey (1, true, true, &quadratic, LC_LK_QUADRATIC);
ChangeKey (1, true, true, &cutoff, LC_LK_CUTOFF);
ChangeKey (1, true, true, &exponent, LC_LK_EXPONENT);
}
Light::~Light ()
{
if (m_nList != 0)
glDeleteLists (m_nList, 1);
delete m_pTarget;
}
void Light::CreateName(const Light* pLight)
{
int i, max = 0;
for (; pLight; pLight = pLight->m_pNext)
{
if (strncmp (pLight->m_strName, "Light ", 6) == 0)
{
if (sscanf(pLight->m_strName + 6, " #%d", &i) == 1)
{
if (i > max)
max = i;
}
}
}
sprintf (m_strName, "Light #%.2d", max+1);
}
void Light::Select (bool bSelecting, bool bFocus, bool bMultiple)
{
if (bSelecting == true)
{
if (bFocus == true)
{
m_nState |= (LC_LIGHT_FOCUSED|LC_LIGHT_SELECTED);
if (m_pTarget != NULL)
m_pTarget->Select (false, true, bMultiple);
}
else
m_nState |= LC_LIGHT_SELECTED;
if (bMultiple == false)
if (m_pTarget != NULL)
m_pTarget->Select (false, false, bMultiple);
}
else
{
if (bFocus == true)
m_nState &= ~(LC_LIGHT_FOCUSED);
else
m_nState &= ~(LC_LIGHT_SELECTED|LC_LIGHT_FOCUSED);
}
}
void Light::SelectTarget (bool bSelecting, bool bFocus, bool bMultiple)
{
// FIXME: the target should handle this
if (bSelecting == true)
{
if (bFocus == true)
{
m_nState |= (LC_LIGHT_TARGET_FOCUSED|LC_LIGHT_TARGET_SELECTED);
Select (false, true, bMultiple);
}
else
m_nState |= LC_LIGHT_TARGET_SELECTED;
if (bMultiple == false)
Select (false, false, bMultiple);
}
else
{
if (bFocus == true)
m_nState &= ~(LC_LIGHT_TARGET_FOCUSED);
else
m_nState &= ~(LC_LIGHT_TARGET_SELECTED|LC_LIGHT_TARGET_FOCUSED);
}
}
void Light::MinIntersectDist (LC_CLICKLINE* pLine)
{
float dist;
if (m_nState & LC_LIGHT_HIDDEN)
return;
dist = (float)BoundingBoxIntersectDist (pLine);
if (dist < pLine->mindist)
{
pLine->mindist = dist;
pLine->pClosest = this;
}
if (m_pTarget != NULL)
m_pTarget->MinIntersectDist (pLine);
}
void Light::Move (unsigned short nTime, bool bAnimation, bool bAddKey, float dx, float dy, float dz)
{
if (IsEyeSelected())
{
m_fPos[0] += dx;
m_fPos[1] += dy;
m_fPos[2] += dz;
ChangeKey (nTime, bAnimation, bAddKey, m_fPos, LC_LK_POSITION);
}
if (IsTargetSelected())
{
m_fTarget[0] += dx;
m_fTarget[1] += dy;
m_fTarget[2] += dz;
ChangeKey (nTime, bAnimation, bAddKey, m_fTarget, LC_LK_TARGET);
}
}
void Light::UpdatePosition (unsigned short nTime, bool bAnimation)
{
CalculateKeys(nTime, bAnimation);
BoundingBoxCalculate(m_fPos);
if (m_pTarget != NULL)
{
m_pTarget->BoundingBoxCalculate(m_fTarget);
if (m_nList == 0)
m_nList = glGenLists(1);
glNewList(m_nList, GL_COMPILE);
glPushMatrix();
glTranslatef(m_fPos[0], m_fPos[1], m_fPos[2]);
lcVector3 FrontVector(m_fTarget[0] - m_fPos[0], m_fTarget[1] - m_fPos[1], m_fTarget[2] - m_fPos[2]);
lcVector3 UpVector(1, 1, 1);
float Length = FrontVector.Length();
if (fabs (FrontVector[0]) < fabs (FrontVector[1]))
{
if (fabs(FrontVector[0]) < fabs(FrontVector[2]))
UpVector[0] = -(UpVector[1] * FrontVector[1] + UpVector[2] * FrontVector[2]);
else
UpVector[2] = -(UpVector[0] * FrontVector[0] + UpVector[1] * FrontVector[1]);
}
else
{
if (fabs(FrontVector[1]) < fabs(FrontVector[2]))
UpVector[1] = -(UpVector[0] * FrontVector[0] + UpVector[2] * FrontVector[2]);
else
UpVector[2] = -(UpVector[0] * FrontVector[0] + UpVector[1] * FrontVector[1]);
}
Matrix mat;
mat.CreateLookat(m_fPos, m_fTarget, UpVector);
mat.Invert();
mat.SetTranslation(0, 0, 0);
glMultMatrixf(mat.m);
glEnableClientState (GL_VERTEX_ARRAY);
float verts[16*3];
for (int i = 0; i < 8; i++)
{
verts[i*6] = verts[i*6+3] = (float)cos ((float)i/4 * PI) * 0.3f;
verts[i*6+1] = verts[i*6+4] = (float)sin ((float)i/4 * PI) * 0.3f;
verts[i*6+2] = 0.3f;
verts[i*6+5] = -0.3f;
}
glVertexPointer (3, GL_FLOAT, 0, verts);
glDrawArrays (GL_LINES, 0, 16);
glVertexPointer (3, GL_FLOAT, 6*sizeof(float), verts);
glDrawArrays (GL_LINE_LOOP, 0, 8);
glVertexPointer (3, GL_FLOAT, 6*sizeof(float), &verts[3]);
glDrawArrays (GL_LINE_LOOP, 0, 8);
glBegin (GL_LINE_LOOP);
glVertex3f (-0.5f, -0.5f, -0.3f);
glVertex3f ( 0.5f, -0.5f, -0.3f);
glVertex3f ( 0.5f, 0.5f, -0.3f);
glVertex3f (-0.5f, 0.5f, -0.3f);
glEnd ();
glTranslatef(0, 0, -Length);
glEndList();
if (m_nTargetList == 0)
{
m_nTargetList = glGenLists (1);
glNewList (m_nTargetList, GL_COMPILE);
glEnableClientState (GL_VERTEX_ARRAY);
float box[24][3] = {
{ 0.2f, 0.2f, 0.2f }, { -0.2f, 0.2f, 0.2f },
{ -0.2f, 0.2f, 0.2f }, { -0.2f, -0.2f, 0.2f },
{ -0.2f, -0.2f, 0.2f }, { 0.2f, -0.2f, 0.2f },
{ 0.2f, -0.2f, 0.2f }, { 0.2f, 0.2f, 0.2f },
{ 0.2f, 0.2f, -0.2f }, { -0.2f, 0.2f, -0.2f },
{ -0.2f, 0.2f, -0.2f }, { -0.2f, -0.2f, -0.2f },
{ -0.2f, -0.2f, -0.2f }, { 0.2f, -0.2f, -0.2f },
{ 0.2f, -0.2f, -0.2f }, { 0.2f, 0.2f, -0.2f },
{ 0.2f, 0.2f, 0.2f }, { 0.2f, 0.2f, -0.2f },
{ -0.2f, 0.2f, 0.2f }, { -0.2f, 0.2f, -0.2f },
{ -0.2f, -0.2f, 0.2f }, { -0.2f, -0.2f, -0.2f },
{ 0.2f, -0.2f, 0.2f }, { 0.2f, -0.2f, -0.2f } };
glVertexPointer (3, GL_FLOAT, 0, box);
glDrawArrays (GL_LINES, 0, 24);
glPopMatrix ();
glEndList ();
}
}
else
{
if (m_nSphereList == 0)
m_nSphereList = glGenLists (1);
glNewList (m_nSphereList, GL_COMPILE);
const float radius = 0.2f;
const int slices = 6, stacks = 6;
float rho, drho, theta, dtheta;
float x, y, z;
int i, j, imin, imax;
drho = 3.1415926536f/(float)stacks;
dtheta = 2.0f*3.1415926536f/(float)slices;
// draw +Z end as a triangle fan
glBegin (GL_TRIANGLE_FAN);
glVertex3f (0.0, 0.0, radius);
for (j = 0; j <= slices; j++)
{
theta = (j == slices) ? 0.0f : j * dtheta;
x = (float)(-sin(theta) * sin(drho));
y = (float)(cos(theta) * sin(drho));
z = (float)(cos(drho));
glVertex3f (x*radius, y*radius, z*radius);
}
glEnd ();
imin = 1;
imax = stacks-1;
for (i = imin; i < imax; i++)
{
rho = i * drho;
glBegin (GL_QUAD_STRIP);
for (j = 0; j <= slices; j++)
{
theta = (j == slices) ? 0.0f : j * dtheta;
x = (float)(-sin(theta) * sin(rho));
y = (float)(cos(theta) * sin(rho));
z = (float)(cos(rho));
glVertex3f (x*radius, y*radius, z*radius);
x = (float)(-sin(theta) * sin(rho+drho));
y = (float)(cos(theta) * sin(rho+drho));
z = (float)(cos(rho+drho));
glVertex3f (x*radius, y*radius, z*radius);
}
glEnd ();
}
// draw -Z end as a triangle fan
glBegin (GL_TRIANGLE_FAN);
glVertex3f(0.0, 0.0, -radius);
rho = 3.1415926536f - drho;
for (j = slices; j >= 0; j--)
{
theta = (j==slices) ? 0.0f : j * dtheta;
x = (float)(-sin(theta) * sin(rho));
y = (float)(cos(theta) * sin(rho));
z = (float)(cos(rho));
glVertex3f (x*radius, y*radius, z*radius);
}
glEnd ();
glEndList ();
}
}
void Light::Render (float fLineWidth)
{
if (m_pTarget != NULL)
{
if (IsEyeSelected())
{
glLineWidth(fLineWidth*2);
if (m_nState & LC_LIGHT_FOCUSED)
lcSetColorFocused();
else
lcSetColorSelected();
glCallList(m_nList);
glLineWidth(fLineWidth);
}
else
{
lcSetColorLight();
glCallList(m_nList);
}
if (IsTargetSelected())
{
glLineWidth(fLineWidth*2);
if (m_nState & LC_LIGHT_TARGET_FOCUSED)
lcSetColorFocused();
else
lcSetColorSelected();
glCallList(m_nTargetList);
glLineWidth(fLineWidth);
}
else
{
lcSetColorLight();
glCallList(m_nTargetList);
}
lcSetColorLight();
glBegin(GL_LINES);
glVertex3fv(m_fPos);
glVertex3fv(m_fTarget);
glEnd();
if (IsSelected())
{
Matrix projection, modelview;
lcVector3 FrontVector(m_fTarget[0] - m_fPos[0], m_fTarget[1] - m_fPos[1], m_fTarget[2] - m_fPos[2]);
lcVector3 UpVector(1, 1, 1);
float Length = FrontVector.Length();
if (fabs(FrontVector[0]) < fabs(FrontVector[1]))
{
if (fabs(FrontVector[0]) < fabs(FrontVector[2]))
UpVector[0] = -(UpVector[1] * FrontVector[1] + UpVector[2] * FrontVector[2]);
else
UpVector[2] = -(UpVector[0] * FrontVector[0] + UpVector[1] * FrontVector[1]);
}
else
{
if (fabs(FrontVector[1]) < fabs(FrontVector[2]))
UpVector[1] = -(UpVector[0] * FrontVector[0] + UpVector[2] * FrontVector[2]);
else
UpVector[2] = -(UpVector[0] * FrontVector[0] + UpVector[1] * FrontVector[1]);
}
glPushMatrix();
modelview.CreateLookat (m_fPos, m_fTarget, UpVector);
modelview.Invert ();
glMultMatrixf (modelview.m);
projection.CreatePerspective (2*m_fCutoff, 1.0f, 0.01f, Length);
projection.Invert ();
glMultMatrixf (projection.m);
// draw the viewing frustum
glBegin (GL_LINE_LOOP);
glVertex3f ( 0.5f, 1.0f, 1.0f);
glVertex3f ( 1.0f, 0.5f, 1.0f);
glVertex3f ( 1.0f, -0.5f, 1.0f);
glVertex3f ( 0.5f, -1.0f, 1.0f);
glVertex3f (-0.5f, -1.0f, 1.0f);
glVertex3f (-1.0f, -0.5f, 1.0f);
glVertex3f (-1.0f, 0.5f, 1.0f);
glVertex3f (-0.5f, 1.0f, 1.0f);
glEnd ();
glBegin (GL_LINES);
glVertex3f (1, 1, -1);
glVertex3f (0.75f, 0.75f, 1);
glVertex3f (-1, 1, -1);
glVertex3f (-0.75f, 0.75f, 1);
glVertex3f (-1, -1, -1);
glVertex3f (-0.75f, -0.75f, 1);
glVertex3f (1, -1, -1);
glVertex3f (0.75f, -0.75f, 1);
glEnd ();
glPopMatrix();
}
}
else
{
glPushMatrix ();
glTranslatef (m_fPos[0], m_fPos[1], m_fPos[2]);
if (IsEyeSelected ())
{
glLineWidth (fLineWidth*2);
if (m_nState & LC_LIGHT_FOCUSED)
lcSetColorFocused();
else
lcSetColorSelected();
glCallList (m_nSphereList);
glLineWidth (fLineWidth);
}
else
{
lcSetColorLight();
glCallList (m_nSphereList);
}
glPopMatrix ();
}
}
void Light::Setup (int index)
{
GLenum light = (GLenum)(GL_LIGHT0+index);
if (!m_bEnabled)
{
glDisable (light);
return;
}
glEnable (light);
glLightfv (light, GL_POSITION, m_fPos);
glLightfv (light, GL_AMBIENT, m_fAmbient);
glLightfv (light, GL_DIFFUSE, m_fDiffuse);
glLightfv (light, GL_SPECULAR, m_fSpecular);
glLightf (light, GL_CONSTANT_ATTENUATION, m_fConstant);
glLightf (light, GL_LINEAR_ATTENUATION, m_fLinear);
glLightf (light, GL_QUADRATIC_ATTENUATION, m_fQuadratic);
if (m_pTarget != NULL)
{
lcVector3 Dir(m_fTarget[0] - m_fPos[0], m_fTarget[1] - m_fPos[1], m_fTarget[2] - m_fPos[2]);
Dir.Normalize();
glLightf(light, GL_SPOT_CUTOFF, m_fCutoff);
glLightf(light, GL_SPOT_EXPONENT, m_fExponent);
glLightfv(light, GL_SPOT_DIRECTION, Dir);
}
}