#include "lc_global.h" #include "lc_math.h" #include "lc_colors.h" #include #include #include #include #include "light.h" #include "globals.h" static LC_OBJECT_KEY_INFO light_key_info[LC_LK_COUNT] = { { "Light Position", 3, LC_LK_POSITION }, { "Light Target", 3, LC_LK_TARGET }, { "Ambient Color", 3, LC_LK_AMBIENT_COLOR }, { "Diffuse Color", 3, LC_LK_DIFFUSE_COLOR }, { "Specular Color", 3, LC_LK_SPECULAR_COLOR }, { "Constant Attenuation", 1, LC_LK_CONSTANT_ATTENUATION }, { "Linear Attenuation", 1, LC_LK_LINEAR_ATTENUATION }, { "Quadratic Attenuation", 1, LC_LK_QUADRATIC_ATTENUATION }, { "Spot Cutoff", 1, LC_LK_SPOT_CUTOFF }, { "Spot Exponent", 1, LC_LK_SPOT_EXPONENT } }; // ============================================================================= // LightTarget class LightTarget::LightTarget(Light *pParent) : Object(LC_OBJECT_LIGHT_TARGET) { m_pParent = pParent; /* strcpy(m_strName, pParent->GetName()); m_strName[LC_OBJECT_NAME_LEN-8] = '\0'; strcat(m_strName, ".Target"); */ } LightTarget::~LightTarget() { } void LightTarget::MinIntersectDist(lcClickLine* ClickLine) { lcVector3 Min = lcVector3(-0.2f, -0.2f, -0.2f); lcVector3 Max = lcVector3(0.2f, 0.2f, 0.2f); lcMatrix44 WorldLight = ((Light*)m_pParent)->mWorldLight; WorldLight.SetTranslation(lcMul30(-((Light*)m_pParent)->mTargetPosition, WorldLight)); lcVector3 Start = lcMul31(ClickLine->Start, WorldLight); lcVector3 End = lcMul31(ClickLine->End, WorldLight); float Dist; if (lcBoundingBoxRayMinIntersectDistance(Min, Max, Start, End, &Dist, NULL) && (Dist < ClickLine->MinDist)) { ClickLine->Closest = this; ClickLine->MinDist = Dist; } } void LightTarget::Select(bool bSelecting, bool bFocus, bool bMultiple) { m_pParent->SelectTarget(bSelecting, bFocus, bMultiple); } const char* LightTarget::GetName() const { return m_pParent->GetName(); } // ============================================================================= // Light class // New omni light. Light::Light(float px, float py, float pz) : Object(LC_OBJECT_LIGHT) { Initialize(); float pos[] = { px, py, pz }, target[] = { 0, 0, 0 }; ChangeKey(1, false, true, pos, LC_LK_POSITION); ChangeKey(1, false, true, target, LC_LK_TARGET); ChangeKey(1, true, true, pos, LC_LK_POSITION); ChangeKey(1, true, true, target, LC_LK_TARGET); UpdatePosition(1, false); } // New directional or spot light. Light::Light(float px, float py, float pz, float tx, float ty, float tz) : Object(LC_OBJECT_LIGHT) { Initialize(); float pos[] = { px, py, pz }, target[] = { tx, ty, tz }; ChangeKey(1, false, true, pos, LC_LK_POSITION); ChangeKey(1, false, true, target, LC_LK_TARGET); ChangeKey(1, true, true, pos, LC_LK_POSITION); ChangeKey(1, true, true, target, LC_LK_TARGET); m_pTarget = new LightTarget(this); UpdatePosition(1, false); } void Light::Initialize() { m_bEnabled = true; m_pNext = NULL; m_nState = 0; m_pTarget = NULL; memset(m_strName, 0, sizeof(m_strName)); mAmbientColor[3] = 1.0f; mDiffuseColor[3] = 1.0f; mSpecularColor[3] = 1.0f; float *values[] = { mPosition, mTargetPosition, mAmbientColor, mDiffuseColor, mSpecularColor, &mConstantAttenuation, &mLinearAttenuation, &mQuadraticAttenuation, &mSpotCutoff, &mSpotExponent }; RegisterKeys(values, light_key_info, LC_LK_COUNT); // set the default values float ambient[] = { 0, 0, 0 }, diffuse[] = { 0.8f, 0.8f, 0.8f }, specular[] = { 1, 1, 1 }; float constant = 1, linear = 0, quadratic = 0, cutoff = 30, exponent = 0; ChangeKey(1, false, true, ambient, LC_LK_AMBIENT_COLOR); ChangeKey(1, false, true, diffuse, LC_LK_DIFFUSE_COLOR); ChangeKey(1, false, true, specular, LC_LK_SPECULAR_COLOR); ChangeKey(1, false, true, &constant, LC_LK_CONSTANT_ATTENUATION); ChangeKey(1, false, true, &linear, LC_LK_LINEAR_ATTENUATION); ChangeKey(1, false, true, &quadratic, LC_LK_QUADRATIC_ATTENUATION); ChangeKey(1, false, true, &cutoff, LC_LK_SPOT_CUTOFF); ChangeKey(1, false, true, &exponent, LC_LK_SPOT_EXPONENT); ChangeKey(1, true, true, ambient, LC_LK_AMBIENT_COLOR); ChangeKey(1, true, true, diffuse, LC_LK_DIFFUSE_COLOR); ChangeKey(1, true, true, specular, LC_LK_SPECULAR_COLOR); ChangeKey(1, true, true, &constant, LC_LK_CONSTANT_ATTENUATION); ChangeKey(1, true, true, &linear, LC_LK_LINEAR_ATTENUATION); ChangeKey(1, true, true, &quadratic, LC_LK_QUADRATIC_ATTENUATION); ChangeKey(1, true, true, &cutoff, LC_LK_SPOT_CUTOFF); ChangeKey(1, true, true, &exponent, LC_LK_SPOT_EXPONENT); } Light::~Light() { delete m_pTarget; } void Light::CreateName(const Light* pLight) { int i, max = 0; for (; pLight; pLight = pLight->m_pNext) { if (strncmp(pLight->m_strName, "Light ", 6) == 0) { if (sscanf(pLight->m_strName + 6, " #%d", &i) == 1) { if (i > max) max = i; } } } sprintf(m_strName, "Light #%.2d", max+1); } void Light::Select(bool bSelecting, bool bFocus, bool bMultiple) { if (bSelecting == true) { if (bFocus == true) { m_nState |= (LC_LIGHT_FOCUSED|LC_LIGHT_SELECTED); if (m_pTarget != NULL) m_pTarget->Select(false, true, bMultiple); } else m_nState |= LC_LIGHT_SELECTED; if (bMultiple == false) if (m_pTarget != NULL) m_pTarget->Select(false, false, bMultiple); } else { if (bFocus == true) m_nState &= ~(LC_LIGHT_FOCUSED); else m_nState &= ~(LC_LIGHT_SELECTED|LC_LIGHT_FOCUSED); } } void Light::SelectTarget(bool bSelecting, bool bFocus, bool bMultiple) { // TODO: the target should handle this if (bSelecting == true) { if (bFocus == true) { m_nState |= (LC_LIGHT_TARGET_FOCUSED|LC_LIGHT_TARGET_SELECTED); Select(false, true, bMultiple); } else m_nState |= LC_LIGHT_TARGET_SELECTED; if (bMultiple == false) Select(false, false, bMultiple); } else { if (bFocus == true) m_nState &= ~(LC_LIGHT_TARGET_FOCUSED); else m_nState &= ~(LC_LIGHT_TARGET_SELECTED|LC_LIGHT_TARGET_FOCUSED); } } void Light::MinIntersectDist(lcClickLine* ClickLine) { if (m_pTarget) { lcVector3 Min = lcVector3(-0.2f, -0.2f, -0.2f); lcVector3 Max = lcVector3(0.2f, 0.2f, 0.2f); lcVector3 Start = lcMul31(ClickLine->Start, mWorldLight); lcVector3 End = lcMul31(ClickLine->End, mWorldLight); float Dist; if (lcBoundingBoxRayMinIntersectDistance(Min, Max, Start, End, &Dist, NULL) && (Dist < ClickLine->MinDist)) { ClickLine->Closest = this; ClickLine->MinDist = Dist; } m_pTarget->MinIntersectDist(ClickLine); } else { float Dist; if (lcSphereRayMinIntersectDistance(mPosition, 0.2f, ClickLine->Start, ClickLine->End, &Dist)) { ClickLine->Closest = this; ClickLine->MinDist = Dist; } } } void Light::Move(unsigned short nTime, bool bAnimation, bool bAddKey, float dx, float dy, float dz) { lcVector3 MoveVec(dx, dy, dz); if (IsEyeSelected()) { mPosition += MoveVec; ChangeKey(nTime, bAnimation, bAddKey, mPosition, LC_LK_POSITION); } if (IsTargetSelected()) { mTargetPosition += MoveVec; ChangeKey(nTime, bAnimation, bAddKey, mTargetPosition, LC_LK_TARGET); } } void Light::UpdatePosition(unsigned short nTime, bool bAnimation) { CalculateKeys(nTime, bAnimation); if (m_pTarget != NULL) { lcVector3 frontvec = mTargetPosition - mPosition; lcVector3 up(1, 1, 1); if (fabs(frontvec[0]) < fabs(frontvec[1])) { if (fabs(frontvec[0]) < fabs(frontvec[2])) up[0] = -(up[1]*frontvec[1] + up[2]*frontvec[2]); else up[2] = -(up[0]*frontvec[0] + up[1]*frontvec[1]); } else { if (fabs(frontvec[1]) < fabs(frontvec[2])) up[1] = -(up[0]*frontvec[0] + up[2]*frontvec[2]); else up[2] = -(up[0]*frontvec[0] + up[1]*frontvec[1]); } mWorldLight = lcMatrix44LookAt(mPosition, mTargetPosition, up); } else { mWorldLight = lcMatrix44Identity(); mWorldLight.SetTranslation(-mPosition); } } void Light::Render(float fLineWidth) { glEnableClientState(GL_VERTEX_ARRAY); if (m_pTarget != NULL) { glPushMatrix(); if (IsEyeSelected()) { glLineWidth(fLineWidth*2); if (m_nState & LC_LIGHT_FOCUSED) lcSetColorFocused(); else lcSetColorSelected(); RenderCone(); glLineWidth(fLineWidth); } else { lcSetColorLight(); RenderCone(); } if (IsTargetSelected()) { glLineWidth(fLineWidth*2); if (m_nState & LC_LIGHT_TARGET_FOCUSED) lcSetColorFocused(); else lcSetColorSelected(); RenderTarget(); glLineWidth(fLineWidth); } else { lcSetColorLight(); RenderTarget(); } glPopMatrix(); lcSetColorLight(); lcVector3 Line[2] = { mPosition, mTargetPosition }; glVertexPointer(3, GL_FLOAT, 0, Line); glDrawArrays(GL_LINES, 0, 2); if (IsSelected()) { lcMatrix44 projection, modelview; lcVector3 FrontVector(mTargetPosition - mPosition); lcVector3 UpVector(1, 1, 1); float Length = FrontVector.Length(); if (fabs(FrontVector[0]) < fabs(FrontVector[1])) { if (fabs(FrontVector[0]) < fabs(FrontVector[2])) UpVector[0] = -(UpVector[1] * FrontVector[1] + UpVector[2] * FrontVector[2]); else UpVector[2] = -(UpVector[0] * FrontVector[0] + UpVector[1] * FrontVector[1]); } else { if (fabs(FrontVector[1]) < fabs(FrontVector[2])) UpVector[1] = -(UpVector[0] * FrontVector[0] + UpVector[2] * FrontVector[2]); else UpVector[2] = -(UpVector[0] * FrontVector[0] + UpVector[1] * FrontVector[1]); } glPushMatrix(); modelview = lcMatrix44LookAt(mPosition, mTargetPosition, UpVector); modelview = lcMatrix44AffineInverse(modelview); glMultMatrixf(modelview); projection = lcMatrix44Perspective(2*mSpotCutoff, 1.0f, 0.01f, Length); projection = lcMatrix44Inverse(projection); glMultMatrixf(projection); // Draw the light cone. float Verts[16][3] = { { 0.5f, 1.0f, 1.0f }, { 1.0f, 0.5f, 1.0f }, { 1.0f, -0.5f, 1.0f }, { 0.5f, -1.0f, 1.0f }, { -0.5f, -1.0f, 1.0f }, { -1.0f, -0.5f, 1.0f }, { -1.0f, 0.5f, 1.0f }, { -0.5f, 1.0f, 1.0f }, { 1.0f, 1.0f, -1.0f }, { 0.75f, 0.75f, 1.0f }, { -1.0f, 1.0f, -1.0f }, { -0.75f, 0.75f, 1.0f }, { -1.0f, -1.0f, -1.0f }, { -0.75f, -0.75f, 1.0f }, { 1.0f, -1.0f, -1.0f }, { 0.75f, -0.75f, 1.0f } }; glVertexPointer(3, GL_FLOAT, 0, Verts); glDrawArrays(GL_LINE_LOOP, 0, 8); glDrawArrays(GL_LINES, 8, 8); glPopMatrix(); } } else { glPushMatrix(); glTranslatef(mPosition[0], mPosition[1], mPosition[2]); if (IsEyeSelected()) { if (m_nState & LC_LIGHT_FOCUSED) lcSetColorFocused(); else lcSetColorSelected(); } else lcSetColorLight(); RenderSphere(); glPopMatrix(); } glDisableClientState(GL_VERTEX_ARRAY); } void Light::RenderCone() { glTranslatef(mPosition[0], mPosition[1], mPosition[2]); lcVector3 FrontVector(mTargetPosition - mPosition); lcVector3 UpVector(1, 1, 1); float Length = FrontVector.Length(); if (fabs(FrontVector[0]) < fabs(FrontVector[1])) { if (fabs(FrontVector[0]) < fabs(FrontVector[2])) UpVector[0] = -(UpVector[1] * FrontVector[1] + UpVector[2] * FrontVector[2]); else UpVector[2] = -(UpVector[0] * FrontVector[0] + UpVector[1] * FrontVector[1]); } else { if (fabs(FrontVector[1]) < fabs(FrontVector[2])) UpVector[1] = -(UpVector[0] * FrontVector[0] + UpVector[2] * FrontVector[2]); else UpVector[2] = -(UpVector[0] * FrontVector[0] + UpVector[1] * FrontVector[1]); } lcMatrix44 mat = lcMatrix44LookAt(mPosition, mTargetPosition, UpVector); mat = lcMatrix44AffineInverse(mat); mat.SetTranslation(lcVector3(0, 0, 0)); glMultMatrixf(mat); float verts[16*3]; for (int i = 0; i < 8; i++) { verts[i*6] = verts[i*6+3] = (float)cos((float)i/4 * LC_PI) * 0.3f; verts[i*6+1] = verts[i*6+4] = (float)sin((float)i/4 * LC_PI) * 0.3f; verts[i*6+2] = 0.3f; verts[i*6+5] = -0.3f; } glVertexPointer(3, GL_FLOAT, 0, verts); glDrawArrays(GL_LINES, 0, 16); glVertexPointer(3, GL_FLOAT, 6*sizeof(float), verts); glDrawArrays(GL_LINE_LOOP, 0, 8); glVertexPointer(3, GL_FLOAT, 6*sizeof(float), &verts[3]); glDrawArrays(GL_LINE_LOOP, 0, 8); float Lines[4][3] = { { -0.5f, -0.5f, -0.3f }, { 0.5f, -0.5f, -0.3f }, { 0.5f, 0.5f, -0.3f }, { -0.5f, 0.5f, -0.3f } }; glVertexPointer(3, GL_FLOAT, 0, Lines); glDrawArrays(GL_LINE_LOOP, 0, 4); glTranslatef(0, 0, -Length); } void Light::RenderTarget() { float box[24][3] = { { 0.2f, 0.2f, 0.2f }, { -0.2f, 0.2f, 0.2f }, { -0.2f, 0.2f, 0.2f }, { -0.2f, -0.2f, 0.2f }, { -0.2f, -0.2f, 0.2f }, { 0.2f, -0.2f, 0.2f }, { 0.2f, -0.2f, 0.2f }, { 0.2f, 0.2f, 0.2f }, { 0.2f, 0.2f, -0.2f }, { -0.2f, 0.2f, -0.2f }, { -0.2f, 0.2f, -0.2f }, { -0.2f, -0.2f, -0.2f }, { -0.2f, -0.2f, -0.2f }, { 0.2f, -0.2f, -0.2f }, { 0.2f, -0.2f, -0.2f }, { 0.2f, 0.2f, -0.2f }, { 0.2f, 0.2f, 0.2f }, { 0.2f, 0.2f, -0.2f }, { -0.2f, 0.2f, 0.2f }, { -0.2f, 0.2f, -0.2f }, { -0.2f, -0.2f, 0.2f }, { -0.2f, -0.2f, -0.2f }, { 0.2f, -0.2f, 0.2f }, { 0.2f, -0.2f, -0.2f } }; glVertexPointer(3, GL_FLOAT, 0, box); glDrawArrays(GL_LINES, 0, 24); } void Light::RenderSphere() { const int Slices = 6; const int NumIndices = 3 * Slices + 6 * Slices * (Slices - 2) + 3 * Slices; const int NumVertices = (Slices - 1) * Slices + 2; const float Radius = 0.2f; lcVector3 Vertices[NumVertices]; lcuint16 Indices[NumIndices]; lcVector3* Vertex = Vertices; lcuint16* Index = Indices; *Vertex++ = lcVector3(0, 0, Radius); for (int i = 1; i < Slices; i++ ) { float r0 = Radius * sinf(i * (LC_PI / Slices)); float z0 = Radius * cosf(i * (LC_PI / Slices)); for (int j = 0; j < Slices; j++) { float x0 = r0 * sinf(j * (LC_2PI / Slices)); float y0 = r0 * cosf(j * (LC_2PI / Slices)); *Vertex++ = lcVector3(x0, y0, z0); } } *Vertex++ = lcVector3(0, 0, -Radius); for (int i = 0; i < Slices - 1; i++ ) { *Index++ = 0; *Index++ = 1 + i; *Index++ = 1 + i + 1; } *Index++ = 0; *Index++ = 1; *Index++ = 1 + Slices - 1; for (int i = 0; i < Slices - 2; i++ ) { int Row1 = 1 + i * Slices; int Row2 = 1 + (i + 1) * Slices; for (int j = 0; j < Slices - 1; j++ ) { *Index++ = Row1 + j; *Index++ = Row2 + j + 1; *Index++ = Row2 + j; *Index++ = Row1 + j; *Index++ = Row1 + j + 1; *Index++ = Row2 + j + 1; } *Index++ = Row1 + Slices - 1; *Index++ = Row2 + 0; *Index++ = Row2 + Slices - 1; *Index++ = Row1 + Slices - 1; *Index++ = Row2 + 0; *Index++ = Row1 + 0; } for (int i = 0; i < Slices - 1; i++ ) { *Index++ = (Slices - 1) * Slices + 1; *Index++ = (Slices - 1) * (Slices - 1) + i; *Index++ = (Slices - 1) * (Slices - 1) + i + 1; } *Index++ = (Slices - 1) * Slices + 1; *Index++ = (Slices - 1) * (Slices - 1) + (Slices - 2) + 1; *Index++ = (Slices - 1) * (Slices - 1); glVertexPointer(3, GL_FLOAT, 0, Vertices); glDrawElements(GL_TRIANGLES, NumIndices, GL_UNSIGNED_SHORT, Indices); } void Light::Setup(int index) { GLenum light = (GLenum)(GL_LIGHT0+index); if (!m_bEnabled) { glDisable(light); return; } bool Omni = (m_pTarget == NULL); bool Spot = (m_pTarget != NULL) && (mSpotCutoff != 180.0f); glEnable(light); glLightfv(light, GL_AMBIENT, mAmbientColor); glLightfv(light, GL_DIFFUSE, mDiffuseColor); glLightfv(light, GL_SPECULAR, mSpecularColor); if (Omni || Spot) { glLightf(light, GL_CONSTANT_ATTENUATION, mConstantAttenuation); glLightf(light, GL_LINEAR_ATTENUATION, mLinearAttenuation); glLightf(light, GL_QUADRATIC_ATTENUATION, mQuadraticAttenuation); lcVector4 Position(mPosition, 1.0f); glLightfv(light, GL_POSITION, Position); } else { glLightf(light, GL_CONSTANT_ATTENUATION, 1.0f); glLightf(light, GL_LINEAR_ATTENUATION, 0.0f); glLightf(light, GL_QUADRATIC_ATTENUATION, 0.0f); lcVector4 Position(mPosition, 0.0f); glLightfv(light, GL_POSITION, Position); } if (Omni) { lcVector3 Dir(0.0f, 0.0f, 0.0f); glLightf(light, GL_SPOT_CUTOFF, 180.0f); glLightf(light, GL_SPOT_EXPONENT, mSpotExponent); glLightfv(light, GL_SPOT_DIRECTION, Dir); } else { lcVector3 Dir(mTargetPosition - mPosition); Dir.Normalize(); glLightf(light, GL_SPOT_CUTOFF, mSpotCutoff); glLightf(light, GL_SPOT_EXPONENT, mSpotExponent); glLightfv(light, GL_SPOT_DIRECTION, Dir); } }