#include "lc_global.h" #include #include #include "image.h" #include "quant.h" #include "lc_file.h" // ============================================================================= typedef struct { unsigned char colormap[3][256]; // State for GetCode and LZWReadByte char code_buf[256+4]; int last_byte; // # of bytes in code_buf int last_bit; // # of bits in code_buf int cur_bit; // next bit index to read bool out_of_blocks; // true if hit terminator data block int input_code_size; // codesize given in GIF file int clear_code,end_code;// values for Clear and End codes int code_size; // current actual code size int limit_code; // 2^code_size int max_code; // first unused code value bool first_time; // flags first call to LZWReadByte // Private state for LZWReadByte int oldcode; // previous LZW symbol int firstcode; // first byte of oldcode's expansion // LZW symbol table and expansion stack lcuint16 *symbol_head; // => table of prefix symbols lcuint8 *symbol_tail; // => table of suffix bytes lcuint8 *symbol_stack; // => stack for symbol expansions lcuint8 *sp; // stack pointer // State for interlaced image processing bool is_interlaced; // true if have interlaced image // jvirt_sarray_ptr interlaced_image; // full image in interlaced order unsigned char* interlaced_image; lcuint32 cur_row_number; // need to know actual row number lcuint32 pass2_offset; // # of pixel rows in pass 1 lcuint32 pass3_offset; // # of pixel rows in passes 1&2 lcuint32 pass4_offset; // # of pixel rows in passes 1,2,3 lcFile* input_file; bool first_interlace; unsigned char* buffer;//JSAMPARRAY buffer; unsigned int width, height; } gif_source_struct; typedef gif_source_struct *gif_source_ptr; // Macros for extracting header data --- note we assume chars may be signed #define LM_to_uint(a,b) ((((b)&0xFF) << 8) | ((a)&0xFF)) #define BitSet(byte, bit) ((byte) & (bit)) #define INTERLACE 0x40 // mask for bit signifying interlaced image #define COLORMAPFLAG 0x80 // mask for bit signifying colormap presence #undef LZW_TABLE_SIZE #define MAX_LZW_BITS 12 // maximum LZW code size #define LZW_TABLE_SIZE (1<input_file->ReadU8(); if (count > 0) sinfo->input_file->ReadBuffer(buf, count); return count; } static int GetCode (gif_source_ptr sinfo) { register lcint32 accum; int offs, ret, count; while ((sinfo->cur_bit + sinfo->code_size) > sinfo->last_bit) { if (sinfo->out_of_blocks) return sinfo->end_code; // fake something useful sinfo->code_buf[0] = sinfo->code_buf[sinfo->last_byte-2]; sinfo->code_buf[1] = sinfo->code_buf[sinfo->last_byte-1]; if ((count = GetDataBlock(sinfo, &sinfo->code_buf[2])) == 0) { sinfo->out_of_blocks = true; return sinfo->end_code; // fake something useful } sinfo->cur_bit = (sinfo->cur_bit - sinfo->last_bit) + 16; sinfo->last_byte = 2 + count; sinfo->last_bit = sinfo->last_byte * 8; } offs = sinfo->cur_bit >> 3; // byte containing cur_bit accum = sinfo->code_buf[offs+2] & 0xFF; accum <<= 8; accum |= sinfo->code_buf[offs+1] & 0xFF; accum <<= 8; accum |= sinfo->code_buf[offs] & 0xFF; accum >>= (sinfo->cur_bit & 7); ret = ((int) accum) & ((1 << sinfo->code_size) - 1); sinfo->cur_bit += sinfo->code_size; return ret; } static int LZWReadByte (gif_source_ptr sinfo) { register int code; // current working code int incode; // saves actual input code // First time, just eat the expected Clear code(s) and return next code, // which is expected to be a raw byte. if (sinfo->first_time) { sinfo->first_time = false; code = sinfo->clear_code; // enables sharing code with Clear case } else { // If any codes are stacked from a previously read symbol, return them if (sinfo->sp > sinfo->symbol_stack) return (int) *(-- sinfo->sp); // Time to read a new symbol code = GetCode(sinfo); } if (code == sinfo->clear_code) { sinfo->code_size = sinfo->input_code_size + 1; sinfo->limit_code = sinfo->clear_code << 1; // 2^code_size sinfo->max_code = sinfo->clear_code + 2; // first unused code value sinfo->sp = sinfo->symbol_stack; // init stack to empty do { code = GetCode(sinfo); } while (code == sinfo->clear_code); if (code > sinfo->clear_code) code = 0; // use something valid sinfo->firstcode = sinfo->oldcode = code; return code; } if (code == sinfo->end_code) { if (!sinfo->out_of_blocks) { char buf[256]; while (GetDataBlock(sinfo, buf) > 0) ; // skip sinfo->out_of_blocks = true; } return 0; // fake something usable } incode = code; // save for a moment if (code >= sinfo->max_code) { // special case for not-yet-defined symbol // code == max_code is OK; anything bigger is bad data if (code > sinfo->max_code) incode = 0; // prevent creation of loops in symbol table // this symbol will be defined as oldcode/firstcode *(sinfo->sp++) = (lcuint8) sinfo->firstcode; code = sinfo->oldcode; } while (code >= sinfo->clear_code) { *(sinfo->sp++) = sinfo->symbol_tail[code]; // tail is a byte value code = sinfo->symbol_head[code]; // head is another LZW symbol } sinfo->firstcode = code; // save for possible future use if ((code = sinfo->max_code) < LZW_TABLE_SIZE) { sinfo->symbol_head[code] = sinfo->oldcode; sinfo->symbol_tail[code] = (lcuint8) sinfo->firstcode; sinfo->max_code++; if ((sinfo->max_code >= sinfo->limit_code) && (sinfo->code_size < MAX_LZW_BITS)) { sinfo->code_size++; sinfo->limit_code <<= 1; // keep equal to 2^code_size } } sinfo->oldcode = incode; // save last input symbol for future use return sinfo->firstcode; // return first byte of symbol's expansion } bool Image::LoadGIF(lcFile& file) { gif_source_ptr source; source = (gif_source_ptr)malloc (sizeof(gif_source_struct)); source->input_file = &file; char hdrbuf[10]; unsigned int width, height; int colormaplen; int c; FreeData (); source->input_file->ReadBuffer(hdrbuf, 6); if ((hdrbuf[0] != 'G' || hdrbuf[1] != 'I' || hdrbuf[2] != 'F') || ((hdrbuf[3] != '8' || hdrbuf[4] != '7' || hdrbuf[5] != 'a') && (hdrbuf[3] != '8' || hdrbuf[4] != '9' || hdrbuf[5] != 'a'))) return false; source->input_file->ReadBuffer(hdrbuf, 7); width = LM_to_uint(hdrbuf[0],hdrbuf[1]); height = LM_to_uint(hdrbuf[2],hdrbuf[3]); source->height = height; source->width = width; colormaplen = 2 << (hdrbuf[4] & 0x07); if (BitSet(hdrbuf[4], COLORMAPFLAG)) for (int i = 0; i < colormaplen; i++) { source->colormap[0][i] = source->input_file->ReadU8(); source->colormap[1][i] = source->input_file->ReadU8(); source->colormap[2][i] = source->input_file->ReadU8(); } for (;;) { c = source->input_file->ReadU8(); // if (c == ';') // ERREXIT(cinfo, JERR_GIF_IMAGENOTFOUND); if (c == '!') { char buf[256]; source->input_file->ReadU8(); while (GetDataBlock(source, buf) > 0) ; // skip continue; } if (c != ',') continue; source->input_file->ReadBuffer(hdrbuf, 9); width = LM_to_uint(hdrbuf[4],hdrbuf[5]); height = LM_to_uint(hdrbuf[6],hdrbuf[7]); source->is_interlaced = (hdrbuf[8] & INTERLACE) != 0; if (BitSet(hdrbuf[8], COLORMAPFLAG)) { colormaplen = 2 << (hdrbuf[8] & 0x07); for (int i = 0; i < colormaplen; i++) { source->colormap[0][i] = source->input_file->ReadU8(); source->colormap[1][i] = source->input_file->ReadU8(); source->colormap[2][i] = source->input_file->ReadU8(); } } source->input_code_size = source->input_file->ReadU8(); // if (source->input_code_size < 2 || source->input_code_size >= MAX_LZW_BITS) // ERREXIT1(cinfo, JERR_GIF_CODESIZE, source->input_code_size); break; } source->symbol_head = (lcuint16*) malloc(LZW_TABLE_SIZE * sizeof(lcuint16)); source->symbol_tail = (lcuint8*) malloc (LZW_TABLE_SIZE * sizeof(lcuint8)); source->symbol_stack = (lcuint8*) malloc (LZW_TABLE_SIZE * sizeof(lcuint8)); source->last_byte = 2; // make safe to "recopy last two bytes" source->last_bit = 0; // nothing in the buffer source->cur_bit = 0; // force buffer load on first call source->out_of_blocks = false; source->clear_code = 1 << source->input_code_size; source->end_code = source->clear_code + 1; source->first_time = true; source->code_size = source->input_code_size + 1; source->limit_code = source->clear_code << 1; // 2^code_size source->max_code = source->clear_code + 2; // first unused code value source->sp = source->symbol_stack; // init stack to empty if (source->is_interlaced) { source->first_interlace = true; source->interlaced_image = (unsigned char*)malloc(width*height); } else source->first_interlace = false; source->buffer = (unsigned char*)malloc(width*3); m_pData = (unsigned char*)malloc(width*height*3); m_nWidth = width; m_nHeight = height; m_bAlpha = false; // FIXME: create the alpha channel for transparent files unsigned char* buf = m_pData; for (unsigned long scanline = 0; scanline < height; scanline++) { if (source->is_interlaced) { if (source->first_interlace) { register lcuint8 *sptr; register lcuint32 col; lcuint32 row; for (row = 0; row < source->height; row++) { sptr = &source->interlaced_image[row*source->width]; for (col = source->width; col > 0; col--) *sptr++ = (lcuint8) LZWReadByte(source); } source->first_interlace = false; source->cur_row_number = 0; source->pass2_offset = (source->height + 7) / 8; source->pass3_offset = source->pass2_offset + (source->height + 3) / 8; source->pass4_offset = source->pass3_offset + (source->height + 1) / 4; } lcuint8 *sptr, *ptr; lcuint32 col; lcuint32 irow; // Figure out which row of interlaced image is needed, and access it. switch ((int) (source->cur_row_number & 7)) { case 0: // first-pass row irow = source->cur_row_number >> 3; break; case 4: // second-pass row irow = (source->cur_row_number >> 3) + source->pass2_offset; break; case 2: // third-pass row case 6: irow = (source->cur_row_number >> 2) + source->pass3_offset; break; default: // fourth-pass row irow = (source->cur_row_number >> 1) + source->pass4_offset; break; } sptr = &source->interlaced_image[irow*source->width]; ptr = source->buffer; for (col = source->width; col > 0; col--) { c = *sptr++; *ptr++ = source->colormap[0][c]; *ptr++ = source->colormap[1][c]; *ptr++ = source->colormap[2][c]; } source->cur_row_number++; // for next time } else { lcuint8 *ptr; lcuint32 col; ptr = source->buffer; for (col = source->width; col > 0; col--) { c = LZWReadByte(source); *ptr++ = source->colormap[0][c]; *ptr++ = source->colormap[1][c]; *ptr++ = source->colormap[2][c]; } } memcpy (buf+(width*scanline*3), source->buffer, 3*width); } if (source->is_interlaced) free(source->interlaced_image); free(source->buffer); free(source->symbol_head); free(source->symbol_tail); free(source->symbol_stack); free(source); return true; } // ============================================================================= #undef LZW_TABLE_SIZE #define MAX_LZW_BITS 12 typedef lcint16 code_int; #define LZW_TABLE_SIZE ((code_int) 1 << MAX_LZW_BITS) #define HSIZE 5003 typedef int hash_int; #define MAXCODE(n_bits) (((code_int) 1 << (n_bits)) - 1) typedef lcint32 hash_entry; #define HASH_ENTRY(prefix,suffix) ((((hash_entry) (prefix)) << 8) | (suffix)) typedef struct { int n_bits; code_int maxcode; int init_bits; lcint32 cur_accum; int cur_bits; code_int waiting_code; bool first_byte; code_int ClearCode; code_int EOFCode; code_int free_code; code_int *hash_code; hash_entry *hash_value; int bytesinpkt; char packetbuf[256]; lcFile* output_file; void* buffer;//JSAMPARRAY buffer; } gif_dest_struct; typedef gif_dest_struct* gif_dest_ptr; // Emit a 16-bit word, LSB first static void put_word(lcFile& output_file, unsigned int w) { output_file.WriteU8(w & 0xFF); output_file.WriteU8((w >> 8) & 0xFF); } static void flush_packet(gif_dest_ptr dinfo) { if (dinfo->bytesinpkt > 0) { dinfo->packetbuf[0] = (char) dinfo->bytesinpkt++; dinfo->output_file->WriteBuffer(dinfo->packetbuf, dinfo->bytesinpkt); dinfo->bytesinpkt = 0; } } static void output(gif_dest_ptr dinfo, code_int code) { dinfo->cur_accum |= ((lcint32) code) << dinfo->cur_bits; dinfo->cur_bits += dinfo->n_bits; while (dinfo->cur_bits >= 8) { (dinfo)->packetbuf[++(dinfo)->bytesinpkt] = (char) (dinfo->cur_accum & 0xFF); if ((dinfo)->bytesinpkt >= 255) flush_packet(dinfo); dinfo->cur_accum >>= 8; dinfo->cur_bits -= 8; } if (dinfo->free_code > dinfo->maxcode) { dinfo->n_bits++; if (dinfo->n_bits == MAX_LZW_BITS) dinfo->maxcode = LZW_TABLE_SIZE; else dinfo->maxcode = MAXCODE(dinfo->n_bits); } } // Accept and compress one 8-bit byte static void compress_byte (gif_dest_ptr dinfo, int c) { register hash_int i; register hash_int disp; register hash_entry probe_value; if (dinfo->first_byte) { dinfo->waiting_code = c; dinfo->first_byte = false; return; } i = ((hash_int) c << (MAX_LZW_BITS-8)) + dinfo->waiting_code; if (i >= HSIZE) i -= HSIZE; probe_value = HASH_ENTRY(dinfo->waiting_code, c); if (dinfo->hash_code[i] != 0) { if (dinfo->hash_value[i] == probe_value) { dinfo->waiting_code = dinfo->hash_code[i]; return; } if (i == 0) disp = 1; else disp = HSIZE - i; for (;;) { i -= disp; if (i < 0) i += HSIZE; if (dinfo->hash_code[i] == 0) break; if (dinfo->hash_value[i] == probe_value) { dinfo->waiting_code = dinfo->hash_code[i]; return; } } } output(dinfo, dinfo->waiting_code); if (dinfo->free_code < LZW_TABLE_SIZE) { dinfo->hash_code[i] = dinfo->free_code++; dinfo->hash_value[i] = probe_value; } else { memset(dinfo->hash_code, 0, HSIZE * sizeof(code_int)); dinfo->free_code = dinfo->ClearCode + 2; output(dinfo, dinfo->ClearCode); dinfo->n_bits = dinfo->init_bits; dinfo->maxcode = MAXCODE(dinfo->n_bits); } dinfo->waiting_code = c; } bool Image::SaveGIF(lcFile& file, bool transparent, bool interlaced, unsigned char* background) const { int InitCodeSize, FlagByte, i; unsigned char pal[3][256]; unsigned char* colormappedbuffer = (unsigned char*)malloc (m_nWidth*m_nHeight); dl1quant (m_pData, colormappedbuffer, m_nWidth, m_nHeight, 256, true, pal); gif_dest_ptr dinfo; dinfo = (gif_dest_ptr) malloc (sizeof(gif_dest_struct)); dinfo->output_file = &file; dinfo->buffer = malloc(m_nWidth*sizeof(lcuint32)); dinfo->hash_code = (code_int*) malloc(HSIZE * sizeof(code_int)); dinfo->hash_value = (hash_entry*)malloc(HSIZE*sizeof(hash_entry)); InitCodeSize = 8; // Write the GIF header. file.WriteU8('G'); file.WriteU8('I'); file.WriteU8('F'); file.WriteU8('8'); file.WriteU8(transparent ? '9' : '7'); file.WriteU8('a'); // Write the Logical Screen Descriptor put_word(file, (unsigned int)m_nWidth); put_word(file, (unsigned int)m_nHeight); FlagByte = 0x80; FlagByte |= (7) << 4; // color resolution FlagByte |= (7); // size of global color table file.WriteU8(FlagByte); file.WriteU8(0); // Background color index file.WriteU8(0); // Reserved (aspect ratio in GIF89) // Write the Global Color Map for (i = 0; i < 256; i++) { file.WriteU8(pal[0][i]); file.WriteU8(pal[1][i]); file.WriteU8(pal[2][i]); } // Write out extension for transparent colour index, if necessary. if (transparent) { unsigned char index = 0; for (i = 0; i < 256; i++) if (background[0] == pal[0][i] && background[1] == pal[1][i] && background[2] == pal[2][i]) { index = i; break; } file.WriteU8('!'); file.WriteU8(0xf9); file.WriteU8(4); file.WriteU8(1); file.WriteU8(0); file.WriteU8(0); file.WriteU8(index); file.WriteU8(0); } // Write image separator and Image Descriptor file.WriteU8(','); put_word(file, 0); put_word(file, 0); put_word(file, (unsigned int)m_nWidth); put_word(file, (unsigned int)m_nHeight); // flag byte: interlaced if (interlaced) file.WriteU8(0x40); else file.WriteU8(0x00); file.WriteU8(InitCodeSize);// Write Initial Code Size byte // Initialize for LZW compression of image data dinfo->n_bits = dinfo->init_bits = InitCodeSize+1; dinfo->maxcode = MAXCODE(dinfo->n_bits); dinfo->ClearCode = ((code_int) 1 << (InitCodeSize)); dinfo->EOFCode = dinfo->ClearCode + 1; dinfo->free_code = dinfo->ClearCode + 2; dinfo->first_byte = true; dinfo->bytesinpkt = 0; dinfo->cur_accum = 0; dinfo->cur_bits = 0; memset(dinfo->hash_code, 0, HSIZE * sizeof(code_int)); output(dinfo, dinfo->ClearCode); int scanline = 0; int pass = 0; while (scanline < m_nHeight) { memcpy(dinfo->buffer, colormappedbuffer+(scanline*m_nWidth), m_nWidth); register lcuint8 *ptr; register lcuint32 col; ptr = (unsigned char*)dinfo->buffer; for (col = m_nWidth; col > 0; col--) compress_byte(dinfo, *ptr++); if (interlaced) { switch (pass) { case 0: { scanline += 8; if (scanline >= m_nHeight) { pass++; scanline = 4; } } break; case 1: { scanline += 8; if (scanline >= m_nHeight) { pass++; scanline = 2; } } break; case 2: { scanline += 4; if (scanline >= m_nHeight) { pass++; scanline = 1; } } break; case 3: { scanline += 2; } break; } } else scanline++; } // Finish up at the end of the file. if (!dinfo->first_byte) output(dinfo, dinfo->waiting_code); output(dinfo, dinfo->EOFCode); if (dinfo->cur_bits > 0) { (dinfo)->packetbuf[++(dinfo)->bytesinpkt] = (char) (dinfo->cur_accum & 0xFF); if ((dinfo)->bytesinpkt >= 255) flush_packet(dinfo); } flush_packet(dinfo); file.WriteU8(0); file.WriteU8(';'); file.Flush(); free(dinfo->buffer); free(dinfo->hash_code); free(dinfo->hash_value); free(dinfo); free(colormappedbuffer); return true; }