#include "lc_global.h" #include "lc_math.h" #include "lc_colors.h" #include #include #include #include #include "light.h" #include "camera.h" #include "view.h" #include "lc_application.h" #include "lc_context.h" static LC_OBJECT_KEY_INFO light_key_info[LC_LK_COUNT] = { { "Light Position", 3, LC_LK_POSITION }, { "Light Target", 3, LC_LK_TARGET }, { "Ambient Color", 3, LC_LK_AMBIENT_COLOR }, { "Diffuse Color", 3, LC_LK_DIFFUSE_COLOR }, { "Specular Color", 3, LC_LK_SPECULAR_COLOR }, { "Constant Attenuation", 1, LC_LK_CONSTANT_ATTENUATION }, { "Linear Attenuation", 1, LC_LK_LINEAR_ATTENUATION }, { "Quadratic Attenuation", 1, LC_LK_QUADRATIC_ATTENUATION }, { "Spot Cutoff", 1, LC_LK_SPOT_CUTOFF }, { "Spot Exponent", 1, LC_LK_SPOT_EXPONENT } }; // New omni light. lcLight::lcLight(float px, float py, float pz) : lcObject(LC_OBJECT_LIGHT) { Initialize(); float pos[] = { px, py, pz }, target[] = { 0, 0, 0 }; ChangeKey(1, true, pos, LC_LK_POSITION); ChangeKey(1, true, target, LC_LK_TARGET); UpdatePosition(1); } // New directional or spot light. lcLight::lcLight(float px, float py, float pz, float tx, float ty, float tz) : lcObject(LC_OBJECT_LIGHT) { Initialize(); float pos[] = { px, py, pz }, target[] = { tx, ty, tz }; ChangeKey(1, true, pos, LC_LK_POSITION); ChangeKey(1, true, target, LC_LK_TARGET); UpdatePosition(1); } void lcLight::Initialize() { mState = 0; memset(m_strName, 0, sizeof(m_strName)); mAmbientColor[3] = 1.0f; mDiffuseColor[3] = 1.0f; mSpecularColor[3] = 1.0f; float *values[] = { mPosition, mTargetPosition, mAmbientColor, mDiffuseColor, mSpecularColor, &mConstantAttenuation, &mLinearAttenuation, &mQuadraticAttenuation, &mSpotCutoff, &mSpotExponent }; RegisterKeys(values, light_key_info, LC_LK_COUNT); // set the default values float ambient[] = { 0, 0, 0 }, diffuse[] = { 0.8f, 0.8f, 0.8f }, specular[] = { 1, 1, 1 }; float constant = 1, linear = 0, quadratic = 0, cutoff = 30, exponent = 0; ChangeKey(1, true, ambient, LC_LK_AMBIENT_COLOR); ChangeKey(1, true, diffuse, LC_LK_DIFFUSE_COLOR); ChangeKey(1, true, specular, LC_LK_SPECULAR_COLOR); ChangeKey(1, true, &constant, LC_LK_CONSTANT_ATTENUATION); ChangeKey(1, true, &linear, LC_LK_LINEAR_ATTENUATION); ChangeKey(1, true, &quadratic, LC_LK_QUADRATIC_ATTENUATION); ChangeKey(1, true, &cutoff, LC_LK_SPOT_CUTOFF); ChangeKey(1, true, &exponent, LC_LK_SPOT_EXPONENT); } lcLight::~lcLight() { } bool lcLight::FileLoad(lcFile& file) { return true; } void lcLight::FileSave(lcFile& file) const { } void lcLight::CreateName(const lcArray& Lights) { int i, max = 0; for (int LightIdx = 0; LightIdx < Lights.GetSize(); LightIdx++) { lcLight* pLight = Lights[LightIdx]; if (strncmp(pLight->m_strName, "Light ", 6) == 0) { if (sscanf(pLight->m_strName + 6, " #%d", &i) == 1) { if (i > max) max = i; } } } sprintf(m_strName, "Light #%.2d", max+1); } void lcLight::RayTest(lcObjectRayTest& ObjectRayTest) const { if (IsPointLight()) { float Distance; if (lcSphereRayMinIntersectDistance(mPosition, 0.2f, ObjectRayTest.Start, ObjectRayTest.End, &Distance)) { ObjectRayTest.ObjectSection.Object = const_cast(this); ObjectRayTest.ObjectSection.Section = LC_LIGHT_SECTION_POSITION; ObjectRayTest.Distance = Distance; } return; } lcVector3 Min = lcVector3(-0.2f, -0.2f, -0.2f); lcVector3 Max = lcVector3(0.2f, 0.2f, 0.2f); lcVector3 Start = lcMul31(ObjectRayTest.Start, mWorldLight); lcVector3 End = lcMul31(ObjectRayTest.End, mWorldLight); float Distance; if (lcBoundingBoxRayMinIntersectDistance(Min, Max, Start, End, &Distance, NULL) && (Distance < ObjectRayTest.Distance)) { ObjectRayTest.ObjectSection.Object = const_cast(this); ObjectRayTest.ObjectSection.Section = LC_LIGHT_SECTION_POSITION; ObjectRayTest.Distance = Distance; } Min = lcVector3(-0.2f, -0.2f, -0.2f); Max = lcVector3(0.2f, 0.2f, 0.2f); lcMatrix44 WorldTarget = mWorldLight; WorldTarget.SetTranslation(lcMul30(-mTargetPosition, WorldTarget)); Start = lcMul31(ObjectRayTest.Start, WorldTarget); End = lcMul31(ObjectRayTest.End, WorldTarget); if (lcBoundingBoxRayMinIntersectDistance(Min, Max, Start, End, &Distance, NULL) && (Distance < ObjectRayTest.Distance)) { ObjectRayTest.ObjectSection.Object = const_cast(this); ObjectRayTest.ObjectSection.Section = LC_LIGHT_SECTION_TARGET; ObjectRayTest.Distance = Distance; } } void lcLight::BoxTest(lcObjectBoxTest& ObjectBoxTest) const { if (IsPointLight()) { for (int PlaneIdx = 0; PlaneIdx < 6; PlaneIdx++) if (lcDot3(mPosition, ObjectBoxTest.Planes[PlaneIdx]) + ObjectBoxTest.Planes[PlaneIdx][3] > 0.2f) return; lcObjectSection& ObjectSection = ObjectBoxTest.ObjectSections.Add(); ObjectSection.Object = const_cast(this); ObjectSection.Section = LC_LIGHT_SECTION_POSITION; return; } lcVector3 Min(-0.2f, -0.2f, -0.2f); lcVector3 Max(0.2f, 0.2f, 0.2f); lcVector4 LocalPlanes[6]; for (int PlaneIdx = 0; PlaneIdx < 6; PlaneIdx++) { lcVector3 Normal = lcMul30(ObjectBoxTest.Planes[PlaneIdx], mWorldLight); LocalPlanes[PlaneIdx] = lcVector4(Normal, ObjectBoxTest.Planes[PlaneIdx][3] - lcDot3(mWorldLight[3], Normal)); } if (lcBoundingBoxIntersectsVolume(Min, Max, LocalPlanes)) { lcObjectSection& ObjectSection = ObjectBoxTest.ObjectSections.Add(); ObjectSection.Object = const_cast(this); ObjectSection.Section = LC_LIGHT_SECTION_POSITION; } Min = lcVector3(-0.2f, -0.2f, -0.2f); Max = lcVector3(0.2f, 0.2f, 0.2f); lcMatrix44 WorldTarget = mWorldLight; WorldTarget.SetTranslation(lcMul30(-mTargetPosition, WorldTarget)); for (int PlaneIdx = 0; PlaneIdx < 6; PlaneIdx++) { lcVector3 Normal = lcMul30(ObjectBoxTest.Planes[PlaneIdx], WorldTarget); LocalPlanes[PlaneIdx] = lcVector4(Normal, ObjectBoxTest.Planes[PlaneIdx][3] - lcDot3(WorldTarget[3], Normal)); } if (lcBoundingBoxIntersectsVolume(Min, Max, LocalPlanes)) { lcObjectSection& ObjectSection = ObjectBoxTest.ObjectSections.Add(); ObjectSection.Object = const_cast(this); ObjectSection.Section = LC_LIGHT_SECTION_TARGET; } } void lcLight::Move(lcStep Step, bool AddKey, const lcVector3& Distance) { if (IsSelected(LC_LIGHT_SECTION_POSITION)) { mPosition += Distance; ChangeKey(Step, AddKey, mPosition, LC_LK_POSITION); } if (IsSelected(LC_LIGHT_SECTION_TARGET)) { mTargetPosition += Distance; ChangeKey(Step, AddKey, mTargetPosition, LC_LK_TARGET); } } void lcLight::UpdatePosition(lcStep Step) { CalculateKeys(Step); if (IsPointLight()) { mWorldLight = lcMatrix44Identity(); mWorldLight.SetTranslation(-mPosition); } else { lcVector3 FrontVector(mTargetPosition - mPosition); lcVector3 UpVector(1, 1, 1); if (fabs(FrontVector[0]) < fabs(FrontVector[1])) { if (fabs(FrontVector[0]) < fabs(FrontVector[2])) UpVector[0] = -(UpVector[1] * FrontVector[1] + UpVector[2] * FrontVector[2]); else UpVector[2] = -(UpVector[0] * FrontVector[0] + UpVector[1] * FrontVector[1]); } else { if (fabs(FrontVector[1]) < fabs(FrontVector[2])) UpVector[1] = -(UpVector[0] * FrontVector[0] + UpVector[2] * FrontVector[2]); else UpVector[2] = -(UpVector[0] * FrontVector[0] + UpVector[1] * FrontVector[1]); } mWorldLight = lcMatrix44LookAt(mPosition, mTargetPosition, UpVector); } } void lcLight::Render(View* View) { float LineWidth = lcGetPreferences().mLineWidth; const lcMatrix44& ViewMatrix = View->mCamera->mWorldView; lcContext* Context = View->mContext; if (IsPointLight()) { Context->SetWorldViewMatrix(lcMul(lcMatrix44Translation(mPosition), ViewMatrix)); if (IsSelected(LC_LIGHT_SECTION_POSITION)) { if (IsFocused(LC_LIGHT_SECTION_POSITION)) lcSetColorFocused(); else lcSetColorSelected(); } else lcSetColorLight(); RenderSphere(); } else { if (IsSelected(LC_LIGHT_SECTION_POSITION)) { Context->SetLineWidth(2.0f * LineWidth); if (IsFocused(LC_LIGHT_SECTION_POSITION)) lcSetColorFocused(); else lcSetColorSelected(); } else { Context->SetLineWidth(LineWidth); lcSetColorLight(); } RenderCone(ViewMatrix); if (IsSelected(LC_LIGHT_SECTION_TARGET)) { Context->SetLineWidth(2.0f * LineWidth); if (IsFocused(LC_LIGHT_SECTION_TARGET)) lcSetColorFocused(); else lcSetColorSelected(); } else { Context->SetLineWidth(LineWidth); lcSetColorLight(); } RenderTarget(); Context->SetWorldViewMatrix(ViewMatrix); Context->SetLineWidth(LineWidth); lcSetColorLight(); lcVector3 Line[2] = { mPosition, mTargetPosition }; glVertexPointer(3, GL_FLOAT, 0, Line); glDrawArrays(GL_LINES, 0, 2); if (IsSelected()) { lcMatrix44 ProjectionMatrix, LightMatrix; lcVector3 FrontVector(mTargetPosition - mPosition); lcVector3 UpVector(1, 1, 1); float Length = FrontVector.Length(); if (fabs(FrontVector[0]) < fabs(FrontVector[1])) { if (fabs(FrontVector[0]) < fabs(FrontVector[2])) UpVector[0] = -(UpVector[1] * FrontVector[1] + UpVector[2] * FrontVector[2]); else UpVector[2] = -(UpVector[0] * FrontVector[0] + UpVector[1] * FrontVector[1]); } else { if (fabs(FrontVector[1]) < fabs(FrontVector[2])) UpVector[1] = -(UpVector[0] * FrontVector[0] + UpVector[2] * FrontVector[2]); else UpVector[2] = -(UpVector[0] * FrontVector[0] + UpVector[1] * FrontVector[1]); } LightMatrix = lcMatrix44LookAt(mPosition, mTargetPosition, UpVector); LightMatrix = lcMatrix44AffineInverse(LightMatrix); ProjectionMatrix = lcMatrix44Perspective(2 * mSpotCutoff, 1.0f, 0.01f, Length); ProjectionMatrix = lcMatrix44Inverse(ProjectionMatrix); Context->SetWorldViewMatrix(lcMul(ProjectionMatrix, lcMul(LightMatrix, ViewMatrix))); // Draw the light cone. float Verts[16][3] = { { 0.5f, 1.0f, 1.0f }, { 1.0f, 0.5f, 1.0f }, { 1.0f, -0.5f, 1.0f }, { 0.5f, -1.0f, 1.0f }, { -0.5f, -1.0f, 1.0f }, { -1.0f, -0.5f, 1.0f }, { -1.0f, 0.5f, 1.0f }, { -0.5f, 1.0f, 1.0f }, { 1.0f, 1.0f, -1.0f }, { 0.75f, 0.75f, 1.0f }, { -1.0f, 1.0f, -1.0f }, { -0.75f, 0.75f, 1.0f }, { -1.0f, -1.0f, -1.0f }, { -0.75f, -0.75f, 1.0f }, { 1.0f, -1.0f, -1.0f }, { 0.75f, -0.75f, 1.0f } }; glVertexPointer(3, GL_FLOAT, 0, Verts); glDrawArrays(GL_LINE_LOOP, 0, 8); glDrawArrays(GL_LINES, 8, 8); } } } void lcLight::RenderCone(const lcMatrix44& ViewMatrix) { lcVector3 FrontVector(mTargetPosition - mPosition); lcVector3 UpVector(1, 1, 1); float Length = FrontVector.Length(); if (fabs(FrontVector[0]) < fabs(FrontVector[1])) { if (fabs(FrontVector[0]) < fabs(FrontVector[2])) UpVector[0] = -(UpVector[1] * FrontVector[1] + UpVector[2] * FrontVector[2]); else UpVector[2] = -(UpVector[0] * FrontVector[0] + UpVector[1] * FrontVector[1]); } else { if (fabs(FrontVector[1]) < fabs(FrontVector[2])) UpVector[1] = -(UpVector[0] * FrontVector[0] + UpVector[2] * FrontVector[2]); else UpVector[2] = -(UpVector[0] * FrontVector[0] + UpVector[1] * FrontVector[1]); } lcMatrix44 LightMatrix = lcMatrix44LookAt(mPosition, mTargetPosition, UpVector); LightMatrix = lcMatrix44AffineInverse(LightMatrix); LightMatrix.SetTranslation(lcVector3(0, 0, 0)); lcMatrix44 LightViewMatrix = lcMul(LightMatrix, lcMul(lcMatrix44Translation(mPosition), ViewMatrix)); glLoadMatrixf(LightViewMatrix); float verts[16*3]; for (int i = 0; i < 8; i++) { verts[i*6] = verts[i*6+3] = (float)cos((float)i/4 * LC_PI) * 0.3f; verts[i*6+1] = verts[i*6+4] = (float)sin((float)i/4 * LC_PI) * 0.3f; verts[i*6+2] = 0.3f; verts[i*6+5] = -0.3f; } glVertexPointer(3, GL_FLOAT, 0, verts); glDrawArrays(GL_LINES, 0, 16); glVertexPointer(3, GL_FLOAT, 6*sizeof(float), verts); glDrawArrays(GL_LINE_LOOP, 0, 8); glVertexPointer(3, GL_FLOAT, 6*sizeof(float), &verts[3]); glDrawArrays(GL_LINE_LOOP, 0, 8); float Lines[4][3] = { { -0.5f, -0.5f, -0.3f }, { 0.5f, -0.5f, -0.3f }, { 0.5f, 0.5f, -0.3f }, { -0.5f, 0.5f, -0.3f } }; glVertexPointer(3, GL_FLOAT, 0, Lines); glDrawArrays(GL_LINE_LOOP, 0, 4); glLoadMatrixf(lcMul(lcMatrix44Translation(lcVector3(0, 0, -Length)), LightViewMatrix)); } void lcLight::RenderTarget() { float box[24][3] = { { 0.2f, 0.2f, 0.2f }, { -0.2f, 0.2f, 0.2f }, { -0.2f, 0.2f, 0.2f }, { -0.2f, -0.2f, 0.2f }, { -0.2f, -0.2f, 0.2f }, { 0.2f, -0.2f, 0.2f }, { 0.2f, -0.2f, 0.2f }, { 0.2f, 0.2f, 0.2f }, { 0.2f, 0.2f, -0.2f }, { -0.2f, 0.2f, -0.2f }, { -0.2f, 0.2f, -0.2f }, { -0.2f, -0.2f, -0.2f }, { -0.2f, -0.2f, -0.2f }, { 0.2f, -0.2f, -0.2f }, { 0.2f, -0.2f, -0.2f }, { 0.2f, 0.2f, -0.2f }, { 0.2f, 0.2f, 0.2f }, { 0.2f, 0.2f, -0.2f }, { -0.2f, 0.2f, 0.2f }, { -0.2f, 0.2f, -0.2f }, { -0.2f, -0.2f, 0.2f }, { -0.2f, -0.2f, -0.2f }, { 0.2f, -0.2f, 0.2f }, { 0.2f, -0.2f, -0.2f } }; glVertexPointer(3, GL_FLOAT, 0, box); glDrawArrays(GL_LINES, 0, 24); } void lcLight::RenderSphere() { const int Slices = 6; const int NumIndices = 3 * Slices + 6 * Slices * (Slices - 2) + 3 * Slices; const int NumVertices = (Slices - 1) * Slices + 2; const float Radius = 0.2f; lcVector3 Vertices[NumVertices]; lcuint16 Indices[NumIndices]; lcVector3* Vertex = Vertices; lcuint16* Index = Indices; *Vertex++ = lcVector3(0, 0, Radius); for (int i = 1; i < Slices; i++ ) { float r0 = Radius * sinf(i * (LC_PI / Slices)); float z0 = Radius * cosf(i * (LC_PI / Slices)); for (int j = 0; j < Slices; j++) { float x0 = r0 * sinf(j * (LC_2PI / Slices)); float y0 = r0 * cosf(j * (LC_2PI / Slices)); *Vertex++ = lcVector3(x0, y0, z0); } } *Vertex++ = lcVector3(0, 0, -Radius); for (int i = 0; i < Slices - 1; i++ ) { *Index++ = 0; *Index++ = 1 + i; *Index++ = 1 + i + 1; } *Index++ = 0; *Index++ = 1; *Index++ = 1 + Slices - 1; for (int i = 0; i < Slices - 2; i++ ) { int Row1 = 1 + i * Slices; int Row2 = 1 + (i + 1) * Slices; for (int j = 0; j < Slices - 1; j++ ) { *Index++ = Row1 + j; *Index++ = Row2 + j + 1; *Index++ = Row2 + j; *Index++ = Row1 + j; *Index++ = Row1 + j + 1; *Index++ = Row2 + j + 1; } *Index++ = Row1 + Slices - 1; *Index++ = Row2 + 0; *Index++ = Row2 + Slices - 1; *Index++ = Row1 + Slices - 1; *Index++ = Row2 + 0; *Index++ = Row1 + 0; } for (int i = 0; i < Slices - 1; i++ ) { *Index++ = (Slices - 1) * Slices + 1; *Index++ = (Slices - 1) * (Slices - 1) + i; *Index++ = (Slices - 1) * (Slices - 1) + i + 1; } *Index++ = (Slices - 1) * Slices + 1; *Index++ = (Slices - 1) * (Slices - 1) + (Slices - 2) + 1; *Index++ = (Slices - 1) * (Slices - 1); glVertexPointer(3, GL_FLOAT, 0, Vertices); glDrawElements(GL_TRIANGLES, NumIndices, GL_UNSIGNED_SHORT, Indices); } bool lcLight::Setup(int LightIndex) { GLenum LightName = (GLenum)(GL_LIGHT0 + LightIndex); if (mState & LC_LIGHT_DISABLED) return false; glEnable(LightName); glLightfv(LightName, GL_AMBIENT, mAmbientColor); glLightfv(LightName, GL_DIFFUSE, mDiffuseColor); glLightfv(LightName, GL_SPECULAR, mSpecularColor); if (!IsDirectionalLight()) { glLightf(LightName, GL_CONSTANT_ATTENUATION, mConstantAttenuation); glLightf(LightName, GL_LINEAR_ATTENUATION, mLinearAttenuation); glLightf(LightName, GL_QUADRATIC_ATTENUATION, mQuadraticAttenuation); lcVector4 Position(mPosition, 1.0f); glLightfv(LightName, GL_POSITION, Position); } else { lcVector4 Position(mPosition, 0.0f); glLightfv(LightName, GL_POSITION, Position); } if (IsPointLight()) { glLightf(LightName, GL_SPOT_CUTOFF, 180.0f); } else if (IsSpotLight()) { lcVector3 Dir(mTargetPosition - mPosition); Dir.Normalize(); glLightf(LightName, GL_SPOT_CUTOFF, mSpotCutoff); glLightf(LightName, GL_SPOT_EXPONENT, mSpotExponent); glLightfv(LightName, GL_SPOT_DIRECTION, Dir); } return true; }