// // Math and Linear Algebra stuff. // #include "lc_global.h" #include #include "algebra.h" #include "lc_math.h" // ============================================================================ // 4x4 Matrix class. void Matrix44::CreateLookAt(const Vector3& Eye, const Vector3& Target, const Vector3& Up) { Vector3 x, y, z; // Z = Eye - Target z = Eye - Target; // X = Y Cross Z x = Cross3(Up, z); // Y = Z Cross X y = Cross3(z, x); // Normalize everything. x.Normalize(); y.Normalize(); z.Normalize(); m_Rows[0] = Vector4(x[0], y[0], z[0], 0.0f); m_Rows[1] = Vector4(x[1], y[1], z[1], 0.0f); m_Rows[2] = Vector4(x[2], y[2], z[2], 0.0f); m_Rows[3] = m_Rows[0]*-Eye[0] + m_Rows[1]*-Eye[1] + m_Rows[2]*-Eye[2]; m_Rows[3][3] = 1.0f; } void Matrix44::CreatePerspective(float FoVy, float Aspect, float Near, float Far) { float Left, Right, Bottom, Top; Top = Near * (float)tan(FoVy * LC_PI / 360.0f); Bottom = -Top; Left = Bottom * Aspect; Right = Top * Aspect; if ((Near <= 0.0f) || (Far <= 0.0f) || (Near == Far) || (Left == Right) || (Top == Bottom)) return; float x, y, a, b, c, d; x = (2.0f * Near) / (Right - Left); y = (2.0f * Near) / (Top - Bottom); a = (Right + Left) / (Right - Left); b = (Top + Bottom) / (Top - Bottom); c = -(Far + Near) / (Far - Near); d = -(2.0f * Far * Near) / (Far - Near); m_Rows[0] = Vector4(x, 0, 0, 0); m_Rows[1] = Vector4(0, y, 0, 0); m_Rows[2] = Vector4(a, b, c, -1); m_Rows[3] = Vector4(0, 0, d, 0); } void Matrix44::CreateOrtho(float Left, float Right, float Bottom, float Top, float Near, float Far) { m_Rows[0] = Vector4(2.0f / (Right-Left), 0.0f, 0.0f, 0.0f); m_Rows[1] = Vector4(0.0f, 2.0f / (Top-Bottom), 0.0f, 0.0f); m_Rows[2] = Vector4(0.0f, 0.0f, -2.0f / (Far-Near), 0.0f); m_Rows[3] = Vector4(-(Right+Left) / (Right-Left), -(Top+Bottom) / (Top-Bottom), -(Far+Near) / (Far-Near), 1.0f); } void GetFrustumPlanes(const Matrix44& WorldView, const Matrix44& Projection, Vector4 Planes[6]) { // TODO: Use vectors. Matrix44 WorldProj = Mul(WorldView, Projection); Planes[0][0] = (WorldProj[0][0] - WorldProj[0][3]) * -1; Planes[0][1] = (WorldProj[1][0] - WorldProj[1][3]) * -1; Planes[0][2] = (WorldProj[2][0] - WorldProj[2][3]) * -1; Planes[0][3] = (WorldProj[3][0] - WorldProj[3][3]) * -1; Planes[1][0] = WorldProj[0][0] + WorldProj[0][3]; Planes[1][1] = WorldProj[1][0] + WorldProj[1][3]; Planes[1][2] = WorldProj[2][0] + WorldProj[2][3]; Planes[1][3] = WorldProj[3][0] + WorldProj[3][3]; Planes[2][0] = (WorldProj[0][1] - WorldProj[0][3]) * -1; Planes[2][1] = (WorldProj[1][1] - WorldProj[1][3]) * -1; Planes[2][2] = (WorldProj[2][1] - WorldProj[2][3]) * -1; Planes[2][3] = (WorldProj[3][1] - WorldProj[3][3]) * -1; Planes[3][0] = WorldProj[0][1] + WorldProj[0][3]; Planes[3][1] = WorldProj[1][1] + WorldProj[1][3]; Planes[3][2] = WorldProj[2][1] + WorldProj[2][3]; Planes[3][3] = WorldProj[3][1] + WorldProj[3][3]; Planes[4][0] = (WorldProj[0][2] - WorldProj[0][3]) * -1; Planes[4][1] = (WorldProj[1][2] - WorldProj[1][3]) * -1; Planes[4][2] = (WorldProj[2][2] - WorldProj[2][3]) * -1; Planes[4][3] = (WorldProj[3][2] - WorldProj[3][3]) * -1; Planes[5][0] = WorldProj[0][2] + WorldProj[0][3]; Planes[5][1] = WorldProj[1][2] + WorldProj[1][3]; Planes[5][2] = WorldProj[2][2] + WorldProj[2][3]; Planes[5][3] = WorldProj[3][2] + WorldProj[3][3]; for (int i = 0; i < 6; i++) { float Len = Vector3(Planes[i]).Length(); Planes[i] /= -Len; } } Vector3 ZoomExtents(const Vector3& Position, const Matrix44& WorldView, const Matrix44& Projection, const Vector3* Points, int NumPoints) { if (!NumPoints) return Position; Vector4 Planes[6]; GetFrustumPlanes(WorldView, Projection, Planes); Vector3 Front = Vector3(WorldView[0][2], WorldView[1][2], WorldView[2][2]); // Calculate the position that is as close as possible to the model and has all pieces visible. float SmallestDistance = FLT_MAX; for (int p = 0; p < 4; p++) { float ep = Dot3(Position, Planes[p]); float fp = Dot3(Front, Planes[p]); for (int j = 0; j < NumPoints; j++) { // Intersect the camera line with the plane that contains this point, NewEye = Eye + u * (Target - Eye) float u = (ep - Dot3(Points[j], Planes[p])) / fp; if (u < SmallestDistance) SmallestDistance = u; } } return Position - (Front * SmallestDistance); } // Inverse code from the GLU library. Matrix44 Inverse(const Matrix44& m) { #define SWAP_ROWS(a, b) { float *_tmp = a; (a)=(b); (b)=_tmp; } #define MAT(m,c,r) m.m_Rows[r][c] float wtmp[4][8]; float m0, m1, m2, m3, s; float *r0, *r1, *r2, *r3; r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1), r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3), r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1), r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3), r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1), r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3), r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1), r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3), r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; // choose pivot - or die if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2); if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1); if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0); // if (0.0 == r0[0]) return GL_FALSE; // eliminate first variable m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0]; s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s; s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s; s = r0[4]; if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; } s = r0[5]; if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; } s = r0[6]; if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; } s = r0[7]; if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } // choose pivot - or die if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2); if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1); // if (0.0 == r1[1]) return GL_FALSE; // eliminate second variable m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1]; r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2]; r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3]; s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; } s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; } s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; } s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } // choose pivot - or die if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2); // if (0.0 == r2[2]) return GL_FALSE; // eliminate third variable m3 = r3[2]/r2[2]; r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7]; // last check // if (0.0 == r3[3]) return GL_FALSE; s = 1.0f/r3[3]; // now back substitute row 3 r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; m2 = r2[3]; // now back substitute row 2 s = 1.0f/r2[2]; r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); m1 = r1[3]; r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; m0 = r0[3]; r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; m1 = r1[2]; // now back substitute row 1 s = 1.0f/r1[1]; r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); m0 = r0[2]; r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; m0 = r0[1]; // now back substitute row 0 s = 1.0f/r0[0]; r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); Vector4 Row0(r0[4], r1[4], r2[4], r3[4]); Vector4 Row1(r0[5], r1[5], r2[5], r3[5]); Vector4 Row2(r0[6], r1[6], r2[6], r3[6]); Vector4 Row3(r0[7], r1[7], r2[7], r3[7]); Matrix44 out(Row0, Row1, Row2, Row3); return out; #undef MAT #undef SWAP_ROWS } // ============================================================================ // Project/Unproject a point. // Convert world coordinates to screen coordinates. Vector3 ProjectPoint(const Vector3& Pt, const Matrix44& ModelView, const Matrix44& Projection, const int Viewport[4]) { Vector4 Tmp; Tmp = Mul4(Vector4(Pt[0], Pt[1], Pt[2], 1.0f), ModelView); Tmp = Mul4(Tmp, Projection); // Normalize. Tmp /= Tmp[3]; // Screen coordinates. return Vector3(Viewport[0]+(1+Tmp[0])*Viewport[2]/2, Viewport[1]+(1+Tmp[1])*Viewport[3]/2, (1+Tmp[2])/2); } void ProjectPoints(Vector3* Points, int NumPoints, const Matrix44& ModelView, const Matrix44& Projection, const int Viewport[4]) { for (int i = 0; i < NumPoints; i++) { Vector4 Tmp; Tmp = Mul4(Vector4(Points[i][0], Points[i][1], Points[i][2], 1.0f), ModelView); Tmp = Mul4(Tmp, Projection); // Normalize. Tmp /= Tmp[3]; // Screen coordinates. Points[i] = Vector3(Viewport[0]+(1+Tmp[0])*Viewport[2]/2, Viewport[1]+(1+Tmp[1])*Viewport[3]/2, (1+Tmp[2])/2); } } // Convert screen coordinates to world coordinates. Vector3 UnprojectPoint(const Vector3& Point, const Matrix44& ModelView, const Matrix44& Projection, const int Viewport[4]) { Vector3 Tmp = Point; UnprojectPoints(&Tmp, 1, ModelView, Projection, Viewport); return Tmp; } void UnprojectPoints(Vector3* Points, int NumPoints, const Matrix44& ModelView, const Matrix44& Projection, const int Viewport[4]) { // Calculate the screen to model transform. Matrix44 Transform = Inverse(Mul(ModelView, Projection)); for (int i = 0; i < NumPoints; i++) { Vector4 Tmp; // Convert the point to homogeneous coordinates. Tmp[0] = (Points[i][0] - Viewport[0]) * 2.0f / Viewport[2] - 1.0f; Tmp[1] = (Points[i][1] - Viewport[1]) * 2.0f / Viewport[3] - 1.0f; Tmp[2] = Points[i][2] * 2.0f - 1.0f; Tmp[3] = 1.0f; Tmp = Mul4(Tmp, Transform); if (Tmp[3] != 0.0f) Tmp /= Tmp[3]; Points[i] = Vector3(Tmp[0], Tmp[1], Tmp[2]); } } // ============================================================================ // Geometry functions. // Sutherland-Hodgman method of clipping a polygon to a plane. void PolygonPlaneClip(Vector3* InPoints, int NumInPoints, Vector3* OutPoints, int* NumOutPoints, const Vector4& Plane) { Vector3 *s, *p, i; *NumOutPoints = 0; s = &InPoints[NumInPoints-1]; for (int j = 0; j < NumInPoints; j++) { p = &InPoints[j]; if (Dot3(*p, Plane) + Plane[3] <= 0) { if (Dot3(*s, Plane) + Plane[3] <= 0) { // Both points inside. OutPoints[*NumOutPoints] = *p; *NumOutPoints = *NumOutPoints + 1; } else { // Outside, inside. LinePlaneIntersection(i, *s, *p, Plane); OutPoints[*NumOutPoints] = i; *NumOutPoints = *NumOutPoints + 1; OutPoints[*NumOutPoints] = *p; *NumOutPoints = *NumOutPoints + 1; } } else { if (Dot3(*s, Plane) + Plane[3] <= 0) { // Inside, outside. LinePlaneIntersection(i, *s, *p, Plane); OutPoints[*NumOutPoints] = i; *NumOutPoints = *NumOutPoints + 1; } } s = p; } } // Calculate the intersection of a line segment and a plane and returns false // if they are parallel or the intersection is outside the line segment. bool LinePlaneIntersection(Vector3& Intersection, const Vector3& Start, const Vector3& End, const Vector4& Plane) { Vector3 Dir = End - Start; float t1 = Dot3(Plane, Start) + Plane[3]; float t2 = Dot3(Plane, Dir); if (t2 == 0.0f) return false; float t = -t1 / t2; Intersection = Start + t * Dir; if ((t < 0.0f) || (t > 1.0f)) return false; return true; } bool LineTriangleMinIntersection(const Vector3& p1, const Vector3& p2, const Vector3& p3, const Vector3& Start, const Vector3& End, float& MinDist, Vector3& Intersection) { // Calculate the polygon plane. Vector4 Plane; Plane = Cross3(p1 - p2, p3 - p2); Plane[3] = -Dot3(Plane, p1); // Check if the line is parallel to the plane. Vector3 Dir = End - Start; float t1 = Dot3(Plane, Start) + Plane[3]; float t2 = Dot3(Plane, Dir); if (t2 == 0) return false; float t = -(t1 / t2); if (t < 0) return false; // Intersection of the plane and line segment. Intersection = Start - (t1 / t2) * Dir; float Dist = (Start - Intersection).Length(); if (Dist > MinDist) return false; // Check if we're inside the triangle. Vector3 pa1, pa2, pa3; pa1 = (p1 - Intersection).Normalize(); pa2 = (p2 - Intersection).Normalize(); pa3 = (p3 - Intersection).Normalize(); float a1, a2, a3; a1 = Dot3(pa1, pa2); a2 = Dot3(pa2, pa3); a3 = Dot3(pa3, pa1); float total = (acosf(a1) + acosf(a2) + acosf(a3)) * LC_RTOD; if (fabs(total - 360) <= 0.001f) { MinDist = Dist; return true; } return false; } bool LineQuadMinIntersection(const Vector3& p1, const Vector3& p2, const Vector3& p3, const Vector3& p4, const Vector3& Start, const Vector3& End, float& MinDist, Vector3& Intersection) { // Calculate the polygon plane. Vector4 Plane; Plane = Cross3(p1 - p2, p3 - p2); Plane[3] = -Dot3(Plane, p1); // Check if the line is parallel to the plane. Vector3 Dir = End - Start; float t1 = Dot3(Plane, Start) + Plane[3]; float t2 = Dot3(Plane, Dir); if (t2 == 0) return false; float t = -(t1 / t2); if (t < 0) return false; // Intersection of the plane and line segment. Intersection = Start - (t1 / t2) * Dir; float Dist = (Start - Intersection).Length(); if (Dist > MinDist) return false; // Check if we're inside the triangle. Vector3 pa1, pa2, pa3; pa1 = (p1 - Intersection).Normalize(); pa2 = (p2 - Intersection).Normalize(); pa3 = (p3 - Intersection).Normalize(); float a1, a2, a3; a1 = Dot3(pa1, pa2); a2 = Dot3(pa2, pa3); a3 = Dot3(pa3, pa1); float total = (acosf(a1) + acosf(a2) + acosf(a3)) * LC_RTOD; if (fabs(total - 360) <= 0.001f) { MinDist = Dist; return true; } // Check if we're inside the second triangle. pa2 = (p4 - Intersection).Normalize(); a1 = Dot3(pa1, pa2); a2 = Dot3(pa2, pa3); a3 = Dot3(pa3, pa1); total = (acosf(a1) + acosf(a2) + acosf(a3)) * LC_RTOD; if (fabs(total - 360) <= 0.001f) { MinDist = Dist; return true; } return false; }