#include "lc_global.h" #include "lc_math.h" #include "lc_colors.h" #include #include #include #include "light.h" #include "lc_application.h" #include "lc_context.h" #define LC_LIGHT_SPHERE_RADIUS 5.0f #define LC_LIGHT_TARGET_RADIUS 2.5f #define LC_LIGHT_SPOT_CONE_HEIGHT 10.0f #define LC_LIGHT_SPOT_CONE_RADIUS 7.5f #define LC_LIGHT_DIRECTIONAL_RADIUS 5.0f #define LC_LIGHT_DIRECTIONAL_HEIGHT 7.5f #define LC_LIGHT_POSITION_EDGE 7.5f static const std::array(lcLightType::Count)> gLightTypes = { QLatin1String("POINT"), QLatin1String("SPOT"), QLatin1String("DIRECTIONAL"), QLatin1String("AREA") }; static const std::array(lcLightAreaShape::Count)> gLightAreaShapes = { QLatin1String("RECTANGLE"), QLatin1String("SQUARE"), QLatin1String("DISK"), QLatin1String("ELLIPSE") }; lcLight::lcLight(const lcVector3& Position, lcLightType LightType) : lcObject(lcObjectType::Light), mLightType(LightType) { mPosition.Reset(Position); UpdateLightType(); UpdatePosition(1); } void lcLight::UpdateLightType() { lcVector2 Size(0.0f, 0.0f); switch (mLightType) { case lcLightType::Point: case lcLightType::Spot: break; case lcLightType::Directional: Size = lcVector2(0.00918f * LC_DTOR, 0.0f); break; case lcLightType::Area: Size = lcVector2(200.0f, 200.0f); break; case lcLightType::Count: break; } mSize.Reset(Size); } QString lcLight::GetLightTypeString(lcLightType LightType) { switch (LightType) { case lcLightType::Point: return QT_TRANSLATE_NOOP("Light Types", "Point Light"); case lcLightType::Spot: return QT_TRANSLATE_NOOP("Light Types", "Spot Light"); case lcLightType::Directional: return QT_TRANSLATE_NOOP("Light Types", "Directional Light"); case lcLightType::Area: return QT_TRANSLATE_NOOP("Light Types", "Area Light"); case lcLightType::Count: break; } return QString(); } QStringList lcLight::GetLightTypeStrings() { QStringList LightTypes; for (int LightTypeIndex = 0; LightTypeIndex < static_cast(lcLightType::Count); LightTypeIndex++) LightTypes.push_back(GetLightTypeString(static_cast(LightTypeIndex))); return LightTypes; } QString lcLight::GetAreaShapeString(lcLightAreaShape LightAreaShape) { switch (LightAreaShape) { case lcLightAreaShape::Rectangle: return QT_TRANSLATE_NOOP("Light Shapes", "Rectangle"); case lcLightAreaShape::Square: return QT_TRANSLATE_NOOP("Light Shapes", "Square"); case lcLightAreaShape::Disk: return QT_TRANSLATE_NOOP("Light Shapes", "Disk"); case lcLightAreaShape::Ellipse: return QT_TRANSLATE_NOOP("Light Shapes", "Ellipse"); case lcLightAreaShape::Count: break; } return QString(); } QStringList lcLight::GetAreaShapeStrings() { QStringList AreaShapes; for (int AreaShapeIndex = 0; AreaShapeIndex < static_cast(lcLightAreaShape::Count); AreaShapeIndex++) AreaShapes.push_back(GetAreaShapeString(static_cast(AreaShapeIndex))); return AreaShapes; } void lcLight::SaveLDraw(QTextStream& Stream) const { const QLatin1String LineEnding("\r\n"); if (!mCastShadow) Stream << QLatin1String("0 !LEOCAD LIGHT SHADOWLESS") << LineEnding; mPosition.Save(Stream, "LIGHT", "POSITION"); mRotation.Save(Stream, "LIGHT", "ROTATION"); mColor.Save(Stream, "LIGHT", "COLOR"); mSize.Save(Stream, "LIGHT", "SIZE"); mPower.Save(Stream, "LIGHT", "POWER"); mAttenuationDistance.Save(Stream, "LIGHT", "ATTENUATION_DISTANCE"); mAttenuationPower.Save(Stream, "LIGHT", "ATTENUATION_POWER"); switch (mLightType) { case lcLightType::Count: case lcLightType::Point: break; case lcLightType::Spot: mSpotConeAngle.Save(Stream, "LIGHT", "SPOT_CONE_ANGLE"); mSpotPenumbraAngle.Save(Stream, "LIGHT", "SPOT_PENUMBRA_ANGLE"); mSpotTightness.Save(Stream, "LIGHT", "SPOT_TIGHTNESS"); break; case lcLightType::Directional: break; case lcLightType::Area: Stream << QLatin1String("0 !LEOCAD LIGHT AREA_SHAPE ") << gLightAreaShapes[static_cast(mAreaShape)] << LineEnding; mAreaGrid.Save(Stream, "LIGHT", "AREA_GRID"); break; } Stream << QLatin1String("0 !LEOCAD LIGHT TYPE ") << gLightTypes[static_cast(mLightType)] << QLatin1String(" NAME ") << mName << LineEnding; } void lcLight::CreateName(const lcArray& Lights) { if (!mName.isEmpty()) { bool Found = false; for (const lcLight* Light : Lights) { if (Light->GetName() == mName) { Found = true; break; } } if (!Found) return; } int MaxLightNumber = 0; QString Prefix; switch (mLightType) { case lcLightType::Point: Prefix = QLatin1String("Point Light "); break; case lcLightType::Spot: Prefix = QLatin1String("Spot Light "); break; case lcLightType::Directional: Prefix = QLatin1String("Directional Light "); break; case lcLightType::Area: Prefix = QLatin1String("Area Light "); break; case lcLightType::Count: break; } for (const lcLight* Light : Lights) { QString LightName = Light->GetName(); if (LightName.startsWith(Prefix)) { bool Ok = false; int LightNumber = LightName.mid(Prefix.size()).toInt(&Ok); if (Ok && LightNumber > MaxLightNumber) MaxLightNumber = LightNumber; } } mName = Prefix + QString::number(MaxLightNumber + 1); } bool lcLight::ParseLDrawLine(QTextStream& Stream) { while (!Stream.atEnd()) { QString Token; Stream >> Token; if (mPosition.Load(Stream, Token, "POSITION")) continue; else if (mRotation.Load(Stream, Token, "ROTATION")) continue; else if (mColor.Load(Stream, Token, "COLOR")) continue; else if (mSize.Load(Stream, Token, "SIZE")) continue; else if (mPower.Load(Stream, Token, "POWER")) continue; else if (mAttenuationDistance.Load(Stream, Token, "ATTENUATION_DISTANCE")) continue; else if (mAttenuationPower.Load(Stream, Token, "ATTENUATION_POWER")) continue; else if (mSpotConeAngle.Load(Stream, Token, "SPOT_CONE_ANGLE")) continue; else if (mSpotPenumbraAngle.Load(Stream, Token, "SPOT_PENUMBRA_ANGLE")) continue; else if (mSpotTightness.Load(Stream, Token, "SPOT_TIGHTNESS")) continue; else if (mAreaGrid.Load(Stream, Token, "AREA_GRID")) continue; else if (Token == QLatin1String("AREA_SHAPE")) { QString AreaShape; Stream >> AreaShape; for (size_t ShapeIndex = 0; ShapeIndex < gLightAreaShapes.size(); ShapeIndex++) { if (AreaShape == gLightAreaShapes[ShapeIndex]) { mAreaShape = static_cast(ShapeIndex); break; } } } else if (Token == QLatin1String("TYPE")) { QString Type; Stream >> Type; for (size_t TypeIndex = 0; TypeIndex < gLightTypes.size(); TypeIndex++) { if (Type == gLightTypes[TypeIndex]) { mLightType = static_cast(TypeIndex); break; } } } else if (Token == QLatin1String("SHADOWLESS")) { mCastShadow = false; } else if (Token == QLatin1String("NAME")) { mName = Stream.readAll().trimmed(); mName.replace("\"", ""); return true; } } return false; } void lcLight::CompareBoundingBox(lcVector3& Min, lcVector3& Max) { const lcVector3 Point = mWorldMatrix.GetTranslation(); // TODO: this should check the entire mesh Min = lcMin(Point, Min); Max = lcMax(Point, Max); } void lcLight::RayTest(lcObjectRayTest& ObjectRayTest) const { if (IsPointLight()) { float Distance; if (lcSphereRayMinIntersectDistance(mWorldMatrix.GetTranslation(), LC_LIGHT_SPHERE_RADIUS, ObjectRayTest.Start, ObjectRayTest.End, &Distance) && (Distance < ObjectRayTest.Distance)) { ObjectRayTest.ObjectSection.Object = const_cast(this); ObjectRayTest.ObjectSection.Section = LC_LIGHT_SECTION_POSITION; ObjectRayTest.Distance = Distance; } return; } if (mLightType == lcLightType::Spot) { const lcVector3 Direction = -lcVector3(mWorldMatrix[2]); const lcVector3 Position = mWorldMatrix.GetTranslation() - Direction * LC_LIGHT_SPOT_CONE_HEIGHT; float Distance; if (lcConeRayMinIntersectDistance(Position, Direction, LC_LIGHT_SPOT_CONE_RADIUS, LC_LIGHT_SPOT_CONE_HEIGHT, ObjectRayTest.Start, ObjectRayTest.End, &Distance) && (Distance < ObjectRayTest.Distance)) { ObjectRayTest.ObjectSection.Object = const_cast(this); ObjectRayTest.ObjectSection.Section = LC_LIGHT_SECTION_POSITION; ObjectRayTest.Distance = Distance; } } else if (mLightType == lcLightType::Area) { const lcVector3 Direction = -lcVector3(mWorldMatrix[2]); const lcVector3 Position = mWorldMatrix.GetTranslation(); const lcVector4 Plane(Direction, -lcDot(Direction, Position)); lcVector3 Intersection; if (lcLineSegmentPlaneIntersection(&Intersection, ObjectRayTest.Start, ObjectRayTest.End, Plane)) { const lcVector3 XAxis = lcVector3(mWorldMatrix[0]); const lcVector3 YAxis = lcVector3(mWorldMatrix[1]); lcVector3 IntersectionDirection = Intersection - Position; float x = lcDot(IntersectionDirection, XAxis); float y = lcDot(IntersectionDirection, YAxis); const lcVector2& Size = mSize; if (fabsf(x) < Size.x / 2.0f && fabsf(y) < Size.y / 2.0f) { float Distance = lcLength(Intersection - ObjectRayTest.Start); if (Distance < ObjectRayTest.Distance) { ObjectRayTest.ObjectSection.Object = const_cast(this); ObjectRayTest.ObjectSection.Section = LC_LIGHT_SECTION_POSITION; ObjectRayTest.Distance = Distance; } } } } const lcMatrix44 InverseWorldMatrix = lcMatrix44AffineInverse(mWorldMatrix); lcVector3 Start = lcMul31(ObjectRayTest.Start, InverseWorldMatrix); lcVector3 End = lcMul31(ObjectRayTest.End, InverseWorldMatrix); float Distance; lcVector3 Plane; if (mLightType == lcLightType::Directional) { if (lcCylinderRayMinIntersectDistance(LC_LIGHT_DIRECTIONAL_RADIUS, LC_LIGHT_DIRECTIONAL_HEIGHT, Start, End, &Distance) && (Distance < ObjectRayTest.Distance)) { ObjectRayTest.ObjectSection.Object = const_cast(this); ObjectRayTest.ObjectSection.Section = LC_LIGHT_SECTION_POSITION; ObjectRayTest.Distance = Distance; ObjectRayTest.PieceInfoRayTest.Plane = Plane; } } if (IsSelected()) { if (lcSphereRayMinIntersectDistance(lcMul31(lcVector3(0,0,-mTargetDistance), mWorldMatrix), LC_LIGHT_TARGET_RADIUS, ObjectRayTest.Start, ObjectRayTest.End, &Distance) && (Distance < ObjectRayTest.Distance)) { ObjectRayTest.ObjectSection.Object = const_cast(this); ObjectRayTest.ObjectSection.Section = LC_LIGHT_SECTION_TARGET; ObjectRayTest.Distance = Distance; } } } void lcLight::BoxTest(lcObjectBoxTest& ObjectBoxTest) const { if (IsPointLight()) { for (int PlaneIdx = 0; PlaneIdx < 6; PlaneIdx++) if (lcDot3(mWorldMatrix.GetTranslation(), ObjectBoxTest.Planes[PlaneIdx]) + ObjectBoxTest.Planes[PlaneIdx][3] > LC_LIGHT_SPHERE_RADIUS) return; ObjectBoxTest.Objects.Add(const_cast(this)); return; } lcVector3 Min(-LC_LIGHT_POSITION_EDGE, -LC_LIGHT_POSITION_EDGE, -LC_LIGHT_POSITION_EDGE); // todo: fix light box test lcVector3 Max( LC_LIGHT_POSITION_EDGE, LC_LIGHT_POSITION_EDGE, LC_LIGHT_POSITION_EDGE); lcVector4 LocalPlanes[6]; for (int PlaneIdx = 0; PlaneIdx < 6; PlaneIdx++) { const lcVector3 Normal = lcMul30(ObjectBoxTest.Planes[PlaneIdx], mWorldMatrix); LocalPlanes[PlaneIdx] = lcVector4(Normal, ObjectBoxTest.Planes[PlaneIdx][3] - lcDot3(mWorldMatrix[3], Normal)); } if (lcBoundingBoxIntersectsVolume(Min, Max, LocalPlanes)) { ObjectBoxTest.Objects.Add(const_cast(this)); return; } } void lcLight::MoveSelected(lcStep Step, bool AddKey, const lcVector3& Distance, bool FirstMove) { const quint32 Section = GetFocusSection(); if (Section == LC_LIGHT_SECTION_POSITION || Section == LC_LIGHT_SECTION_INVALID) { const lcVector3 Position = mWorldMatrix.GetTranslation() + Distance; SetPosition(Position, Step, AddKey); mWorldMatrix.SetTranslation(Position); } else { if (FirstMove) mTargetMovePosition = lcMul31(lcVector3(0.0f, 0.0f, -mTargetDistance), mWorldMatrix); mTargetMovePosition += Distance; lcVector3 CurrentDirection = -lcNormalize(mTargetMovePosition - mWorldMatrix.GetTranslation()); lcMatrix33 WorldMatrix; WorldMatrix.r[0] = lcCross(lcVector3(mWorldMatrix.r[1]), CurrentDirection); WorldMatrix.r[1] = lcCross(CurrentDirection, WorldMatrix.r[0]); WorldMatrix.r[2] = CurrentDirection; WorldMatrix.Orthonormalize(); SetRotation(WorldMatrix, Step, AddKey); mWorldMatrix = lcMatrix44(WorldMatrix, mWorldMatrix.GetTranslation()); } } void lcLight::Rotate(lcStep Step, bool AddKey, const lcMatrix33& RotationMatrix, const lcVector3& Center, const lcMatrix33& RotationFrame) { if (IsPointLight()) return; if (GetFocusSection() != LC_LIGHT_SECTION_POSITION) return; lcVector3 Distance = mWorldMatrix.GetTranslation() - Center; const lcMatrix33 LocalToWorldMatrix = lcMatrix33(mWorldMatrix); const lcMatrix33 LocalToFocusMatrix = lcMul(LocalToWorldMatrix, RotationFrame); lcMatrix33 NewLocalToWorldMatrix = lcMul(LocalToFocusMatrix, RotationMatrix); const lcMatrix33 WorldToLocalMatrix = lcMatrix33AffineInverse(LocalToWorldMatrix); Distance = lcMul(Distance, WorldToLocalMatrix); Distance = lcMul(Distance, NewLocalToWorldMatrix); NewLocalToWorldMatrix.Orthonormalize(); SetPosition(Center + Distance, Step, AddKey); SetRotation(NewLocalToWorldMatrix, Step, AddKey); } bool lcLight::SetLightType(lcLightType LightType) { if (static_cast(LightType) < 0 || LightType >= lcLightType::Count) return false; if (mLightType == LightType) return false; mLightType = LightType; UpdateLightType(); return true; } void lcLight::SetColor(const lcVector3& Color, lcStep Step, bool AddKey) { mColor.ChangeKey(Color, Step, AddKey); } void lcLight::SetAttenuationDistance(float Distance, lcStep Step, bool AddKey) { mAttenuationDistance.ChangeKey(Distance, Step, AddKey); } void lcLight::SetAttenuationPower(float Power, lcStep Step, bool AddKey) { mAttenuationPower.ChangeKey(Power, Step, AddKey); } void lcLight::SetSpotConeAngle(float Angle, lcStep Step, bool AddKey) { mSpotConeAngle.ChangeKey(Angle, Step, AddKey); } void lcLight::SetSpotPenumbraAngle(float Angle, lcStep Step, bool AddKey) { mSpotPenumbraAngle.ChangeKey(Angle, Step, AddKey); } void lcLight::SetSpotTightness(float Tightness, lcStep Step, bool AddKey) { mSpotTightness.ChangeKey(Tightness, Step, AddKey); } bool lcLight::SetAreaShape(lcLightAreaShape AreaShape) { if (static_cast(AreaShape) < 0 || AreaShape >= lcLightAreaShape::Count) return false; if (mAreaShape != AreaShape) { mAreaShape = AreaShape; return true; } return false; } bool lcLight::SetAreaGrid(lcVector2i AreaGrid, lcStep Step, bool AddKey) { mAreaGrid.ChangeKey(AreaGrid, Step, AddKey); return true; } void lcLight::SetSize(lcVector2 Size, lcStep Step, bool AddKey) { if (mLightType == lcLightType::Area && (mAreaShape == lcLightAreaShape::Square || mAreaShape == lcLightAreaShape::Disk)) Size[1] = Size[0]; mSize.ChangeKey(Size, Step, AddKey); } void lcLight::SetPower(float Power, lcStep Step, bool AddKey) { mPower.ChangeKey(Power, Step, AddKey); } bool lcLight::SetCastShadow(bool CastShadow) { if (mCastShadow != CastShadow) { mCastShadow = CastShadow; return true; } return false; } void lcLight::InsertTime(lcStep Start, lcStep Time) { mPosition.InsertTime(Start, Time); mRotation.InsertTime(Start, Time); mColor.InsertTime(Start, Time); mSpotConeAngle.InsertTime(Start, Time); mSpotPenumbraAngle.InsertTime(Start, Time); mSpotTightness.InsertTime(Start, Time); mAreaGrid.InsertTime(Start, Time); mSize.InsertTime(Start, Time); mPower.InsertTime(Start, Time); mAttenuationDistance.InsertTime(Start, Time); mAttenuationPower.InsertTime(Start, Time); } void lcLight::RemoveTime(lcStep Start, lcStep Time) { mPosition.RemoveTime(Start, Time); mRotation.RemoveTime(Start, Time); mColor.RemoveTime(Start, Time); mSpotConeAngle.RemoveTime(Start, Time); mSpotPenumbraAngle.RemoveTime(Start, Time); mSpotTightness.RemoveTime(Start, Time); mAreaGrid.RemoveTime(Start, Time); mSize.RemoveTime(Start, Time); mPower.RemoveTime(Start, Time); mAttenuationDistance.RemoveTime(Start, Time); mAttenuationPower.RemoveTime(Start, Time); } void lcLight::UpdatePosition(lcStep Step) { mPosition.Update(Step); mRotation.Update(Step); mColor.Update(Step); mSpotConeAngle.Update(Step); mSpotPenumbraAngle.Update(Step); mSpotTightness.Update(Step); mAreaGrid.Update(Step); mSize.Update(Step); mPower.Update(Step); mAttenuationDistance.Update(Step); mAttenuationPower.Update(Step); if (IsPointLight()) { mWorldMatrix = lcMatrix44Translation(mPosition); } else { mWorldMatrix = lcMatrix44(mRotation, mPosition); } } void lcLight::DrawInterface(lcContext* Context, const lcScene& Scene) const { Q_UNUSED(Scene); Context->SetMaterial(lcMaterialType::UnlitColor); switch (mLightType) { case lcLightType::Point: DrawPointLight(Context); break; case lcLightType::Spot: DrawSpotLight(Context); break; case lcLightType::Directional: DrawDirectionalLight(Context); break; case lcLightType::Area: DrawAreaLight(Context); break; case lcLightType::Count: break; } } void lcLight::DrawPointLight(lcContext* Context) const { SetupLightMatrix(Context); DrawSphere(Context, lcVector3(0.0f, 0.0f, 0.0f), LC_LIGHT_SPHERE_RADIUS); } void lcLight::DrawSpotLight(lcContext* Context) const { SetupLightMatrix(Context); constexpr int ConeEdges = 8; float Verts[(ConeEdges + 1) * 3]; float* CurVert = Verts; for (int EdgeIndex = 0; EdgeIndex < ConeEdges; EdgeIndex++) { float c = cosf((float)EdgeIndex / ConeEdges * LC_2PI) * LC_LIGHT_SPOT_CONE_RADIUS; float s = sinf((float)EdgeIndex / ConeEdges * LC_2PI) * LC_LIGHT_SPOT_CONE_RADIUS; *CurVert++ = c; *CurVert++ = s; *CurVert++ = 0.0f; } *CurVert++ = 0.0f; *CurVert++ = 0.0f; *CurVert++ = LC_LIGHT_SPOT_CONE_HEIGHT; Context->SetVertexBufferPointer(Verts); Context->SetVertexFormatPosition(3); const GLushort Indices[(ConeEdges + 4) * 2] = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 0, 0, 8, 2, 8, 4, 8, 6, 8, }; Context->SetIndexBufferPointer(Indices); Context->DrawIndexedPrimitives(GL_LINES, (ConeEdges + 4) * 2, GL_UNSIGNED_SHORT, 0); if (IsSelected()) { DrawCone(Context, mTargetDistance); DrawTarget(Context); } } void lcLight::DrawDirectionalLight(lcContext* Context) const { SetupLightMatrix(Context); DrawCylinder(Context, LC_LIGHT_DIRECTIONAL_RADIUS, LC_LIGHT_DIRECTIONAL_HEIGHT); if (IsSelected()) DrawTarget(Context); } void lcLight::DrawAreaLight(lcContext* Context) const { SetupLightMatrix(Context); if (mAreaShape == lcLightAreaShape::Square || mAreaShape == lcLightAreaShape::Rectangle) { float Verts[4 * 3]; float* CurVert = Verts; const lcVector2& Size = mSize; *CurVert++ = -Size.x / 2.0f; *CurVert++ = -Size.y / 2.0f; *CurVert++ = 0.0f; *CurVert++ = Size.x / 2.0f; *CurVert++ = -Size.y / 2.0f; *CurVert++ = 0.0f; *CurVert++ = Size.x / 2.0f; *CurVert++ = Size.y / 2.0f; *CurVert++ = 0.0f; *CurVert++ = -Size.x / 2.0f; *CurVert++ = Size.y / 2.0f; *CurVert++ = 0.0f; Context->SetVertexBufferPointer(Verts); Context->SetVertexFormatPosition(3); const GLushort Indices[(4 + 2) * 2] = { 0, 1, 1, 2, 2, 3, 3, 0, 0, 2, 1, 3, }; Context->SetIndexBufferPointer(Indices); Context->DrawIndexedPrimitives(GL_LINES, (4 + 2) * 2, GL_UNSIGNED_SHORT, 0); } else { constexpr int CircleEdges = 16; float Verts[CircleEdges * 3]; float* CurVert = Verts; for (int EdgeIndex = 0; EdgeIndex < CircleEdges; EdgeIndex++) { const lcVector2& Size = mSize; float c = cosf((float)EdgeIndex / CircleEdges * LC_2PI) * Size.x / 2.0f; float s = sinf((float)EdgeIndex / CircleEdges * LC_2PI) * Size.y / 2.0f; *CurVert++ = c; *CurVert++ = s; *CurVert++ = 0.0f; } Context->SetVertexBufferPointer(Verts); Context->SetVertexFormatPosition(3); const GLushort Indices[(CircleEdges + 2) * 2] = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 0, 0, 8, 4, 12 }; Context->SetIndexBufferPointer(Indices); Context->DrawIndexedPrimitives(GL_LINES, (CircleEdges + 2) * 2, GL_UNSIGNED_SHORT, 0); } if (IsSelected()) DrawTarget(Context); } void lcLight::SetupLightMatrix(lcContext* Context) const { Context->SetWorldMatrix(mWorldMatrix); const lcPreferences& Preferences = lcGetPreferences(); const float LineWidth = Preferences.mLineWidth; if (IsSelected(LC_LIGHT_SECTION_POSITION)) { const lcVector4 SelectedColor = lcVector4FromColor(Preferences.mObjectSelectedColor); const lcVector4 FocusedColor = lcVector4FromColor(Preferences.mObjectFocusedColor); Context->SetLineWidth(2.0f * LineWidth); if (IsFocused(LC_LIGHT_SECTION_POSITION)) Context->SetColor(FocusedColor); else Context->SetColor(SelectedColor); } else { const lcVector4 LightColor = lcVector4FromColor(Preferences.mLightColor); Context->SetLineWidth(LineWidth); Context->SetColor(LightColor); } } void lcLight::DrawSphere(lcContext* Context, const lcVector3& Center, float Radius) const { constexpr int Slices = 6; constexpr int NumIndices = 3 * Slices + 6 * Slices * (Slices - 2) + 3 * Slices; constexpr int NumVertices = (Slices - 1) * Slices + 2; lcVector3 Vertices[NumVertices]; quint16 Indices[NumIndices]; lcVector3* Vertex = Vertices; quint16* Index = Indices; *Vertex++ = Center + lcVector3(0, 0, Radius); for (int i = 1; i < Slices; i++) { const float r0 = Radius * sinf(i * (LC_PI / Slices)); const float z0 = Radius * cosf(i * (LC_PI / Slices)); for (int j = 0; j < Slices; j++) { const float x0 = r0 * sinf(j * (LC_2PI / Slices)); const float y0 = r0 * cosf(j * (LC_2PI / Slices)); *Vertex++ = Center + lcVector3(x0, y0, z0); } } *Vertex++ = Center + lcVector3(0, 0, -Radius); for (quint16 i = 0; i < Slices - 1; i++) { *Index++ = 0; *Index++ = 1 + i; *Index++ = 1 + i + 1; } *Index++ = 0; *Index++ = 1; *Index++ = 1 + Slices - 1; for (quint16 i = 0; i < Slices - 2; i++) { quint16 Row1 = 1 + i * Slices; quint16 Row2 = 1 + (i + 1) * Slices; for (quint16 j = 0; j < Slices - 1; j++) { *Index++ = Row1 + j; *Index++ = Row2 + j + 1; *Index++ = Row2 + j; *Index++ = Row1 + j; *Index++ = Row1 + j + 1; *Index++ = Row2 + j + 1; } *Index++ = Row1 + Slices - 1; *Index++ = Row2 + 0; *Index++ = Row2 + Slices - 1; *Index++ = Row1 + Slices - 1; *Index++ = Row2 + 0; *Index++ = Row1 + 0; } for (quint16 i = 0; i < Slices - 1; i++) { *Index++ = (Slices - 1) * Slices + 1; *Index++ = (Slices - 1) * (Slices - 1) + i; *Index++ = (Slices - 1) * (Slices - 1) + i + 1; } *Index++ = (Slices - 1) * Slices + 1; *Index++ = (Slices - 1) * (Slices - 1) + (Slices - 2) + 1; *Index++ = (Slices - 1) * (Slices - 1); Context->SetVertexBufferPointer(Vertices); Context->SetVertexFormatPosition(3); Context->SetIndexBufferPointer(Indices); Context->DrawIndexedPrimitives(GL_TRIANGLES, NumIndices, GL_UNSIGNED_SHORT, 0); } void lcLight::DrawCylinder(lcContext* Context, float Radius, float Height) const { constexpr int Slices = 8; float Verts[(Slices * 2) * 3]; float* CurVert = Verts; for (int EdgeIndex = 0; EdgeIndex < Slices; EdgeIndex++) { float c = cosf((float)EdgeIndex / Slices * LC_2PI) * Radius; float s = sinf((float)EdgeIndex / Slices * LC_2PI) * Radius; *CurVert++ = c; *CurVert++ = s; *CurVert++ = Height; *CurVert++ = c; *CurVert++ = s; *CurVert++ = 0.0f; } const GLushort Indices[48] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14, 0, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15, 1, }; Context->SetVertexBufferPointer(Verts); Context->SetVertexFormatPosition(3); Context->SetIndexBufferPointer(Indices); Context->DrawIndexedPrimitives(GL_LINES, 48, GL_UNSIGNED_SHORT, 0); } void lcLight::DrawTarget(lcContext* Context) const { float Verts[2 * 3]; float* CurVert = Verts; *CurVert++ = 0.0f; *CurVert++ = 0.0f; *CurVert++ = 0.0f; *CurVert++ = 0.0f; *CurVert++ = 0.0f; *CurVert++ = -mTargetDistance; Context->SetVertexBufferPointer(Verts); Context->SetVertexFormatPosition(3); const GLushort Indices[2] = { 0, 1 }; Context->SetIndexBufferPointer(Indices); Context->DrawIndexedPrimitives(GL_LINES, 2, GL_UNSIGNED_SHORT, 0); const lcPreferences& Preferences = lcGetPreferences(); const float LineWidth = Preferences.mLineWidth; if (IsSelected(LC_LIGHT_SECTION_TARGET)) { const lcVector4 SelectedColor = lcVector4FromColor(Preferences.mObjectSelectedColor); const lcVector4 FocusedColor = lcVector4FromColor(Preferences.mObjectFocusedColor); Context->SetLineWidth(2.0f * LineWidth); if (IsFocused(LC_LIGHT_SECTION_TARGET)) Context->SetColor(FocusedColor); else Context->SetColor(SelectedColor); } else { const lcVector4 LightColor = lcVector4FromColor(Preferences.mLightColor); Context->SetLineWidth(LineWidth); Context->SetColor(LightColor); } DrawSphere(Context, lcVector3(0.0f, 0.0f, -mTargetDistance), LC_LIGHT_TARGET_RADIUS); } void lcLight::DrawCone(lcContext* Context, float TargetDistance) const { constexpr int ConeEdges = 16; const float OuterRadius = tanf(LC_DTOR * mSpotConeAngle / 2.0f) * TargetDistance; float Verts[(ConeEdges * 2 + 1) * 3]; float* CurVert = Verts; for (int EdgeIndex = 0; EdgeIndex < ConeEdges; EdgeIndex++) { const float c = cosf((float)EdgeIndex / ConeEdges * LC_2PI); const float s = sinf((float)EdgeIndex / ConeEdges * LC_2PI); *CurVert++ = c * OuterRadius; *CurVert++ = s * OuterRadius; *CurVert++ = -TargetDistance; } *CurVert++ = 0.0f; *CurVert++ = 0.0f; *CurVert++ = 0.0f; const bool DrawPenumbra = mSpotPenumbraAngle > 1.0f; if (DrawPenumbra) { const float InnerRadius = tanf(LC_DTOR * (mSpotConeAngle / 2.0f - mSpotPenumbraAngle)) * TargetDistance; for (int EdgeIndex = 0; EdgeIndex < ConeEdges; EdgeIndex++) { const float c = cosf((float)EdgeIndex / ConeEdges * LC_2PI); const float s = sinf((float)EdgeIndex / ConeEdges * LC_2PI); *CurVert++ = c * InnerRadius; *CurVert++ = s * InnerRadius; *CurVert++ = -TargetDistance; } } Context->SetVertexBufferPointer(Verts); Context->SetVertexFormatPosition(3); constexpr GLushort Indices[(ConeEdges * 2 + 4) * 2] = { 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 0, 16, 0, 16, 4, 16, 8, 16, 12, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 17 }; Context->SetIndexBufferPointer(Indices); Context->DrawIndexedPrimitives(GL_LINES, DrawPenumbra ? (ConeEdges * 2 + 4) * 2 : (ConeEdges + 4) * 2, GL_UNSIGNED_SHORT, 0); } bool lcLight::HasKeyFrame(lcObjectPropertyId PropertyId, lcStep Time) const { switch (PropertyId) { case lcObjectPropertyId::PieceId: case lcObjectPropertyId::PieceColor: case lcObjectPropertyId::PieceStepShow: case lcObjectPropertyId::PieceStepHide: case lcObjectPropertyId::CameraName: case lcObjectPropertyId::CameraType: case lcObjectPropertyId::CameraFOV: case lcObjectPropertyId::CameraNear: case lcObjectPropertyId::CameraFar: case lcObjectPropertyId::CameraPositionX: case lcObjectPropertyId::CameraPositionY: case lcObjectPropertyId::CameraPositionZ: case lcObjectPropertyId::CameraTargetX: case lcObjectPropertyId::CameraTargetY: case lcObjectPropertyId::CameraTargetZ: case lcObjectPropertyId::CameraUpX: case lcObjectPropertyId::CameraUpY: case lcObjectPropertyId::CameraUpZ: case lcObjectPropertyId::LightName: case lcObjectPropertyId::LightType: return false; case lcObjectPropertyId::LightColor: return mColor.HasKeyFrame(Time); case lcObjectPropertyId::LightPower: return mPower.HasKeyFrame(Time); case lcObjectPropertyId::LightCastShadow: return false; case lcObjectPropertyId::LightAttenuationDistance: return mAttenuationDistance.HasKeyFrame(Time); case lcObjectPropertyId::LightAttenuationPower: return mAttenuationPower.HasKeyFrame(Time); case lcObjectPropertyId::LightPointSize: case lcObjectPropertyId::LightSpotSize: case lcObjectPropertyId::LightDirectionalSize: case lcObjectPropertyId::LightAreaSize: case lcObjectPropertyId::LightAreaSizeX: case lcObjectPropertyId::LightAreaSizeY: return mSize.HasKeyFrame(Time); case lcObjectPropertyId::LightSpotConeAngle: return mSpotConeAngle.HasKeyFrame(Time); case lcObjectPropertyId::LightSpotPenumbraAngle: return mSpotPenumbraAngle.HasKeyFrame(Time); case lcObjectPropertyId::LightSpotTightness: return mSpotTightness.HasKeyFrame(Time); case lcObjectPropertyId::LightAreaShape: return false; case lcObjectPropertyId::LightAreaGridX: case lcObjectPropertyId::LightAreaGridY: return mAreaGrid.HasKeyFrame(Time); case lcObjectPropertyId::ObjectPositionX: case lcObjectPropertyId::ObjectPositionY: case lcObjectPropertyId::ObjectPositionZ: return mPosition.HasKeyFrame(Time); case lcObjectPropertyId::ObjectRotationX: case lcObjectPropertyId::ObjectRotationY: case lcObjectPropertyId::ObjectRotationZ: return mRotation.HasKeyFrame(Time); case lcObjectPropertyId::Count: return false; } return false; } void lcLight::RemoveKeyFrames() { mPosition.Reset(); mRotation.Reset(); mColor.Reset(); mSpotConeAngle.Reset(); mSpotPenumbraAngle.Reset(); mSpotTightness.Reset(); mAreaGrid.Reset(); mSize.Reset(); mPower.Reset(); mAttenuationDistance.Reset(); mAttenuationPower.Reset(); }