// Light object. #include "lc_global.h" #include "lc_math.h" #include "lc_colors.h" #include #include #include #include #include "light.h" #include "globals.h" #include "matrix.h" GLuint Light::m_nSphereList = 0; GLuint Light::m_nTargetList = 0; static LC_OBJECT_KEY_INFO light_key_info[LC_LK_COUNT] = { { "Light Position", 3, LC_LK_POSITION }, { "Light Target", 3, LC_LK_TARGET }, { "Ambient Color", 3, LC_LK_AMBIENT }, { "Diffuse Color", 3, LC_LK_DIFFUSE }, { "Specular Color", 3, LC_LK_SPECULAR }, { "Constant Attenuation", 1, LC_LK_CONSTANT }, { "Linear Attenuation", 1, LC_LK_LINEAR }, { "Quadratic Attenuation", 1, LC_LK_QUADRATIC }, { "Spot Cutoff", 1, LC_LK_CUTOFF }, { "Spot Exponent", 1, LC_LK_EXPONENT } }; // ============================================================================= // CameraTarget class LightTarget::LightTarget (Light *pParent) : Object (LC_OBJECT_LIGHT_TARGET) { m_pParent = pParent; /* strcpy (m_strName, pParent->GetName ()); m_strName[LC_OBJECT_NAME_LEN-8] = '\0'; strcat (m_strName, ".Target"); */ } LightTarget::~LightTarget () { } void LightTarget::MinIntersectDist (LC_CLICKLINE* pLine) { float dist = (float)BoundingBoxIntersectDist (pLine); if (dist < pLine->mindist) { pLine->mindist = dist; pLine->pClosest = this; } } void LightTarget::Select (bool bSelecting, bool bFocus, bool bMultiple) { m_pParent->SelectTarget (bSelecting, bFocus, bMultiple); } const char* LightTarget::GetName() const { return m_pParent->GetName(); } // ============================================================================= // Light class // New positional light Light::Light (float px, float py, float pz) : Object (LC_OBJECT_LIGHT) { Initialize (); float pos[] = { px, py, pz }, target[] = { 0, 0, 0 }; ChangeKey (1, false, true, pos, LC_LK_POSITION); ChangeKey (1, false, true, target, LC_LK_TARGET); ChangeKey (1, true, true, pos, LC_LK_POSITION); ChangeKey (1, true, true, target, LC_LK_TARGET); m_fPos[3] = 0.0f; UpdatePosition (1, false); } // New directional light Light::Light (float px, float py, float pz, float tx, float ty, float tz) : Object (LC_OBJECT_LIGHT) { Initialize (); float pos[] = { px, py, pz }, target[] = { tx, ty, tz }; ChangeKey (1, false, true, pos, LC_LK_POSITION); ChangeKey (1, false, true, target, LC_LK_TARGET); ChangeKey (1, true, true, pos, LC_LK_POSITION); ChangeKey (1, true, true, target, LC_LK_TARGET); m_pTarget = new LightTarget (this); m_fPos[3] = 1.0f; UpdatePosition (1, false); } void Light::Initialize () { m_bEnabled = true; m_pNext = NULL; m_nState = 0; m_pTarget = NULL; m_nList = 0; memset (m_strName, 0, sizeof (m_strName)); m_fAmbient[3] = 1.0f; m_fDiffuse[3] = 1.0f; m_fSpecular[3] = 1.0f; float *values[] = { m_fPos, m_fTarget, m_fAmbient, m_fDiffuse, m_fSpecular, &m_fConstant, &m_fLinear, &m_fQuadratic, &m_fCutoff, &m_fExponent }; RegisterKeys (values, light_key_info, LC_LK_COUNT); // set the default values float ambient[] = { 0, 0, 0 }, diffuse[] = { 0.8f, 0.8f, 0.8f }, specular[] = { 1, 1, 1 }; float constant = 1, linear = 0, quadratic = 0, cutoff = 30, exponent = 0; ChangeKey (1, false, true, ambient, LC_LK_AMBIENT); ChangeKey (1, false, true, diffuse, LC_LK_DIFFUSE); ChangeKey (1, false, true, specular, LC_LK_SPECULAR); ChangeKey (1, false, true, &constant, LC_LK_CONSTANT); ChangeKey (1, false, true, &linear, LC_LK_LINEAR); ChangeKey (1, false, true, &quadratic, LC_LK_QUADRATIC); ChangeKey (1, false, true, &cutoff, LC_LK_CUTOFF); ChangeKey (1, false, true, &exponent, LC_LK_EXPONENT); ChangeKey (1, true, true, ambient, LC_LK_AMBIENT); ChangeKey (1, true, true, diffuse, LC_LK_DIFFUSE); ChangeKey (1, true, true, specular, LC_LK_SPECULAR); ChangeKey (1, true, true, &constant, LC_LK_CONSTANT); ChangeKey (1, true, true, &linear, LC_LK_LINEAR); ChangeKey (1, true, true, &quadratic, LC_LK_QUADRATIC); ChangeKey (1, true, true, &cutoff, LC_LK_CUTOFF); ChangeKey (1, true, true, &exponent, LC_LK_EXPONENT); } Light::~Light () { if (m_nList != 0) glDeleteLists (m_nList, 1); delete m_pTarget; } void Light::CreateName(const Light* pLight) { int i, max = 0; for (; pLight; pLight = pLight->m_pNext) { if (strncmp (pLight->m_strName, "Light ", 6) == 0) { if (sscanf(pLight->m_strName + 6, " #%d", &i) == 1) { if (i > max) max = i; } } } sprintf (m_strName, "Light #%.2d", max+1); } void Light::Select (bool bSelecting, bool bFocus, bool bMultiple) { if (bSelecting == true) { if (bFocus == true) { m_nState |= (LC_LIGHT_FOCUSED|LC_LIGHT_SELECTED); if (m_pTarget != NULL) m_pTarget->Select (false, true, bMultiple); } else m_nState |= LC_LIGHT_SELECTED; if (bMultiple == false) if (m_pTarget != NULL) m_pTarget->Select (false, false, bMultiple); } else { if (bFocus == true) m_nState &= ~(LC_LIGHT_FOCUSED); else m_nState &= ~(LC_LIGHT_SELECTED|LC_LIGHT_FOCUSED); } } void Light::SelectTarget (bool bSelecting, bool bFocus, bool bMultiple) { // FIXME: the target should handle this if (bSelecting == true) { if (bFocus == true) { m_nState |= (LC_LIGHT_TARGET_FOCUSED|LC_LIGHT_TARGET_SELECTED); Select (false, true, bMultiple); } else m_nState |= LC_LIGHT_TARGET_SELECTED; if (bMultiple == false) Select (false, false, bMultiple); } else { if (bFocus == true) m_nState &= ~(LC_LIGHT_TARGET_FOCUSED); else m_nState &= ~(LC_LIGHT_TARGET_SELECTED|LC_LIGHT_TARGET_FOCUSED); } } void Light::MinIntersectDist (LC_CLICKLINE* pLine) { float dist; if (m_nState & LC_LIGHT_HIDDEN) return; dist = (float)BoundingBoxIntersectDist (pLine); if (dist < pLine->mindist) { pLine->mindist = dist; pLine->pClosest = this; } if (m_pTarget != NULL) m_pTarget->MinIntersectDist (pLine); } void Light::Move (unsigned short nTime, bool bAnimation, bool bAddKey, float dx, float dy, float dz) { if (IsEyeSelected()) { m_fPos[0] += dx; m_fPos[1] += dy; m_fPos[2] += dz; ChangeKey (nTime, bAnimation, bAddKey, m_fPos, LC_LK_POSITION); } if (IsTargetSelected()) { m_fTarget[0] += dx; m_fTarget[1] += dy; m_fTarget[2] += dz; ChangeKey (nTime, bAnimation, bAddKey, m_fTarget, LC_LK_TARGET); } } void Light::UpdatePosition (unsigned short nTime, bool bAnimation) { CalculateKeys(nTime, bAnimation); BoundingBoxCalculate(m_fPos); if (m_pTarget != NULL) { m_pTarget->BoundingBoxCalculate(m_fTarget); if (m_nList == 0) m_nList = glGenLists(1); glNewList(m_nList, GL_COMPILE); glPushMatrix(); glTranslatef(m_fPos[0], m_fPos[1], m_fPos[2]); lcVector3 FrontVector(m_fTarget[0] - m_fPos[0], m_fTarget[1] - m_fPos[1], m_fTarget[2] - m_fPos[2]); lcVector3 UpVector(1, 1, 1); float Length = FrontVector.Length(); if (fabs (FrontVector[0]) < fabs (FrontVector[1])) { if (fabs(FrontVector[0]) < fabs(FrontVector[2])) UpVector[0] = -(UpVector[1] * FrontVector[1] + UpVector[2] * FrontVector[2]); else UpVector[2] = -(UpVector[0] * FrontVector[0] + UpVector[1] * FrontVector[1]); } else { if (fabs(FrontVector[1]) < fabs(FrontVector[2])) UpVector[1] = -(UpVector[0] * FrontVector[0] + UpVector[2] * FrontVector[2]); else UpVector[2] = -(UpVector[0] * FrontVector[0] + UpVector[1] * FrontVector[1]); } Matrix mat; mat.CreateLookat(m_fPos, m_fTarget, UpVector); mat.Invert(); mat.SetTranslation(0, 0, 0); glMultMatrixf(mat.m); glEnableClientState (GL_VERTEX_ARRAY); float verts[16*3]; for (int i = 0; i < 8; i++) { verts[i*6] = verts[i*6+3] = (float)cos ((float)i/4 * PI) * 0.3f; verts[i*6+1] = verts[i*6+4] = (float)sin ((float)i/4 * PI) * 0.3f; verts[i*6+2] = 0.3f; verts[i*6+5] = -0.3f; } glVertexPointer (3, GL_FLOAT, 0, verts); glDrawArrays (GL_LINES, 0, 16); glVertexPointer (3, GL_FLOAT, 6*sizeof(float), verts); glDrawArrays (GL_LINE_LOOP, 0, 8); glVertexPointer (3, GL_FLOAT, 6*sizeof(float), &verts[3]); glDrawArrays (GL_LINE_LOOP, 0, 8); glBegin (GL_LINE_LOOP); glVertex3f (-0.5f, -0.5f, -0.3f); glVertex3f ( 0.5f, -0.5f, -0.3f); glVertex3f ( 0.5f, 0.5f, -0.3f); glVertex3f (-0.5f, 0.5f, -0.3f); glEnd (); glTranslatef(0, 0, -Length); glEndList(); if (m_nTargetList == 0) { m_nTargetList = glGenLists (1); glNewList (m_nTargetList, GL_COMPILE); glEnableClientState (GL_VERTEX_ARRAY); float box[24][3] = { { 0.2f, 0.2f, 0.2f }, { -0.2f, 0.2f, 0.2f }, { -0.2f, 0.2f, 0.2f }, { -0.2f, -0.2f, 0.2f }, { -0.2f, -0.2f, 0.2f }, { 0.2f, -0.2f, 0.2f }, { 0.2f, -0.2f, 0.2f }, { 0.2f, 0.2f, 0.2f }, { 0.2f, 0.2f, -0.2f }, { -0.2f, 0.2f, -0.2f }, { -0.2f, 0.2f, -0.2f }, { -0.2f, -0.2f, -0.2f }, { -0.2f, -0.2f, -0.2f }, { 0.2f, -0.2f, -0.2f }, { 0.2f, -0.2f, -0.2f }, { 0.2f, 0.2f, -0.2f }, { 0.2f, 0.2f, 0.2f }, { 0.2f, 0.2f, -0.2f }, { -0.2f, 0.2f, 0.2f }, { -0.2f, 0.2f, -0.2f }, { -0.2f, -0.2f, 0.2f }, { -0.2f, -0.2f, -0.2f }, { 0.2f, -0.2f, 0.2f }, { 0.2f, -0.2f, -0.2f } }; glVertexPointer (3, GL_FLOAT, 0, box); glDrawArrays (GL_LINES, 0, 24); glPopMatrix (); glEndList (); } } else { if (m_nSphereList == 0) m_nSphereList = glGenLists (1); glNewList (m_nSphereList, GL_COMPILE); const float radius = 0.2f; const int slices = 6, stacks = 6; float rho, drho, theta, dtheta; float x, y, z; int i, j, imin, imax; drho = 3.1415926536f/(float)stacks; dtheta = 2.0f*3.1415926536f/(float)slices; // draw +Z end as a triangle fan glBegin (GL_TRIANGLE_FAN); glVertex3f (0.0, 0.0, radius); for (j = 0; j <= slices; j++) { theta = (j == slices) ? 0.0f : j * dtheta; x = (float)(-sin(theta) * sin(drho)); y = (float)(cos(theta) * sin(drho)); z = (float)(cos(drho)); glVertex3f (x*radius, y*radius, z*radius); } glEnd (); imin = 1; imax = stacks-1; for (i = imin; i < imax; i++) { rho = i * drho; glBegin (GL_QUAD_STRIP); for (j = 0; j <= slices; j++) { theta = (j == slices) ? 0.0f : j * dtheta; x = (float)(-sin(theta) * sin(rho)); y = (float)(cos(theta) * sin(rho)); z = (float)(cos(rho)); glVertex3f (x*radius, y*radius, z*radius); x = (float)(-sin(theta) * sin(rho+drho)); y = (float)(cos(theta) * sin(rho+drho)); z = (float)(cos(rho+drho)); glVertex3f (x*radius, y*radius, z*radius); } glEnd (); } // draw -Z end as a triangle fan glBegin (GL_TRIANGLE_FAN); glVertex3f(0.0, 0.0, -radius); rho = 3.1415926536f - drho; for (j = slices; j >= 0; j--) { theta = (j==slices) ? 0.0f : j * dtheta; x = (float)(-sin(theta) * sin(rho)); y = (float)(cos(theta) * sin(rho)); z = (float)(cos(rho)); glVertex3f (x*radius, y*radius, z*radius); } glEnd (); glEndList (); } } void Light::Render (float fLineWidth) { if (m_pTarget != NULL) { if (IsEyeSelected()) { glLineWidth(fLineWidth*2); if (m_nState & LC_LIGHT_FOCUSED) lcSetColorFocused(); else lcSetColorSelected(); glCallList(m_nList); glLineWidth(fLineWidth); } else { lcSetColorLight(); glCallList(m_nList); } if (IsTargetSelected()) { glLineWidth(fLineWidth*2); if (m_nState & LC_LIGHT_TARGET_FOCUSED) lcSetColorFocused(); else lcSetColorSelected(); glCallList(m_nTargetList); glLineWidth(fLineWidth); } else { lcSetColorLight(); glCallList(m_nTargetList); } lcSetColorLight(); glBegin(GL_LINES); glVertex3fv(m_fPos); glVertex3fv(m_fTarget); glEnd(); if (IsSelected()) { Matrix projection, modelview; lcVector3 FrontVector(m_fTarget[0] - m_fPos[0], m_fTarget[1] - m_fPos[1], m_fTarget[2] - m_fPos[2]); lcVector3 UpVector(1, 1, 1); float Length = FrontVector.Length(); if (fabs(FrontVector[0]) < fabs(FrontVector[1])) { if (fabs(FrontVector[0]) < fabs(FrontVector[2])) UpVector[0] = -(UpVector[1] * FrontVector[1] + UpVector[2] * FrontVector[2]); else UpVector[2] = -(UpVector[0] * FrontVector[0] + UpVector[1] * FrontVector[1]); } else { if (fabs(FrontVector[1]) < fabs(FrontVector[2])) UpVector[1] = -(UpVector[0] * FrontVector[0] + UpVector[2] * FrontVector[2]); else UpVector[2] = -(UpVector[0] * FrontVector[0] + UpVector[1] * FrontVector[1]); } glPushMatrix(); modelview.CreateLookat (m_fPos, m_fTarget, UpVector); modelview.Invert (); glMultMatrixf (modelview.m); projection.CreatePerspective (2*m_fCutoff, 1.0f, 0.01f, Length); projection.Invert (); glMultMatrixf (projection.m); // draw the viewing frustum glBegin (GL_LINE_LOOP); glVertex3f ( 0.5f, 1.0f, 1.0f); glVertex3f ( 1.0f, 0.5f, 1.0f); glVertex3f ( 1.0f, -0.5f, 1.0f); glVertex3f ( 0.5f, -1.0f, 1.0f); glVertex3f (-0.5f, -1.0f, 1.0f); glVertex3f (-1.0f, -0.5f, 1.0f); glVertex3f (-1.0f, 0.5f, 1.0f); glVertex3f (-0.5f, 1.0f, 1.0f); glEnd (); glBegin (GL_LINES); glVertex3f (1, 1, -1); glVertex3f (0.75f, 0.75f, 1); glVertex3f (-1, 1, -1); glVertex3f (-0.75f, 0.75f, 1); glVertex3f (-1, -1, -1); glVertex3f (-0.75f, -0.75f, 1); glVertex3f (1, -1, -1); glVertex3f (0.75f, -0.75f, 1); glEnd (); glPopMatrix(); } } else { glPushMatrix (); glTranslatef (m_fPos[0], m_fPos[1], m_fPos[2]); if (IsEyeSelected ()) { glLineWidth (fLineWidth*2); if (m_nState & LC_LIGHT_FOCUSED) lcSetColorFocused(); else lcSetColorSelected(); glCallList (m_nSphereList); glLineWidth (fLineWidth); } else { lcSetColorLight(); glCallList (m_nSphereList); } glPopMatrix (); } } void Light::Setup (int index) { GLenum light = (GLenum)(GL_LIGHT0+index); if (!m_bEnabled) { glDisable (light); return; } glEnable (light); glLightfv (light, GL_POSITION, m_fPos); glLightfv (light, GL_AMBIENT, m_fAmbient); glLightfv (light, GL_DIFFUSE, m_fDiffuse); glLightfv (light, GL_SPECULAR, m_fSpecular); glLightf (light, GL_CONSTANT_ATTENUATION, m_fConstant); glLightf (light, GL_LINEAR_ATTENUATION, m_fLinear); glLightf (light, GL_QUADRATIC_ATTENUATION, m_fQuadratic); if (m_pTarget != NULL) { lcVector3 Dir(m_fTarget[0] - m_fPos[0], m_fTarget[1] - m_fPos[1], m_fTarget[2] - m_fPos[2]); Dir.Normalize(); glLightf(light, GL_SPOT_CUTOFF, m_fCutoff); glLightf(light, GL_SPOT_EXPONENT, m_fExponent); glLightfv(light, GL_SPOT_DIRECTION, Dir); } }