#ifndef _ALGEBRA_H_ #define _ALGEBRA_H_ #include // // Simple math library and linear algebra functions. // // Everything is based on the Vector4 class, so changing that class should be enough // to add support for compiler specific math intrinsics. // // Functions that end with 34 mean that they don't care what happens to the 4th // component, it can either be affected or not. // // Matrices are represented as row-major, so we pre-multiply instead of post-multiplying // like you would in a column major notation. // // OpenGL only expects a matrix to be an array of 16 floats so it doesn't matter what // notation we use. // // v[0] v[1] v[2] v[3] <- x, y, z, w // // m[0] m[1] m[2] m[3] <- x axis // m[4] m[5] m[6] m[7] <- y axis // m[8] m[9] m[10] m[11] <- z axis // m[12] m[13] m[14] m[15] <- translation // // TODO: Move this define to config.h #define LC_MATH_FLOAT //#define LC_MATH_SSE // Classes defined in this file: class Vector3; class Vector4; class Quaternion; class Matrix44; // ============================================================================ // Vector4 class (float version). #ifdef LC_MATH_FLOAT class Vector4 { public: // Constructors. inline Vector4() { } inline explicit Vector4(const float _x, const float _y, const float _z) : x(_x), y(_y), z(_z) { } inline explicit Vector4(const float _x, const float _y, const float _z, const float _w) : x(_x), y(_y), z(_z), w(_w) { } inline operator const float*() const { return (const float*)this; } inline float& operator[](int i) const { return ((float*)this)[i]; } // Comparison. friend inline bool operator==(const Vector4& a, const Vector4& b) { return (a.x == b.x) && (a.y == b.y) && (a.z == b.z) && (a.w == b.w); } friend inline bool Compare3(const Vector4& a, const Vector4& b) { return (a.x == b.x) && (a.y == b.y) && (a.z == b.z); } // Math operations for 4 components. friend inline Vector4 operator+(const Vector4& a, const Vector4& b) { return Vector4(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w); } friend inline Vector4 operator-(const Vector4& a, const Vector4& b) { return Vector4(a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w); } friend inline Vector4 operator*(const Vector4& a, float f) { return Vector4(a.x*f, a.y*f, a.z*f, a.w*f); } friend inline Vector4 operator*(const Vector4& a, const Vector4& b) { return Vector4(a.x*b.x, a.y*b.y, a.z*b.z, a.w*b.w); } friend inline Vector4 operator/(const Vector4& a, float f) { return Vector4(a.x/f, a.y/f, a.z/f, a.w/f); } friend inline Vector4 operator/=(Vector4& a, float f) { a = Vector4(a.x/f, a.y/f, a.z/f, a.w/f); return a; } friend inline Vector4 operator-(const Vector4& a) { return Vector4(-a.x, -a.y, -a.z, -a.w); } // Math operations ignoring the 4th component. friend inline Vector4 Add34(const Vector4& a, const Vector4& b) { return Vector4(a.x+b.x, a.y+b.y, a.z+b.z); } friend inline Vector4 Subtract34(const Vector4& a, const Vector4& b) { return Vector4(a.x-b.x, a.y-b.y, a.z-b.z); } friend inline Vector4 Multiply34(const Vector4& a, float f) { return Vector4(a.x*f, a.y*f, a.z*f); } friend inline Vector4 Multiply34(const Vector4& a, const Vector4& b) { return Vector4(a.x*b.x, a.y*b.y, a.z*b.z); } friend inline Vector4 Divide34(const Vector4& a, float f) { return Vector4(a.x/f, a.y/f, a.z/f); } friend inline Vector4 Negate34(const Vector4& a) { return Vector4(-a.x, -a.y, -a.z, -a.w); } // Dot product. friend inline float Dot3(const Vector4& a, const Vector4& b) { return a.x*b.x + a.y*b.y + a.z*b.z; } friend inline float Dot4(const Vector4& a, const Vector4& b) { return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w; } // Cross product. friend inline Vector4 Cross3(const Vector4& a, const Vector4& b) { return Vector4(a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x); } // Other functions. inline float Length3() const { return sqrtf(x*x + y*y + z*z); } inline void Normalize34() { float len = 1.0f / sqrtf(x*x + y*y + z*z); x *= len; y *= len; z *= len; } inline void Abs34() { if (x < 0.0f) x = -x; if (y < 0.0f) y = -y; if (z < 0.0f) z = -z; } inline void Abs() { if (x < 0.0f) x = -x; if (y < 0.0f) y = -y; if (z < 0.0f) z = -z; if (w < 0.0f) w = -w; } protected: float x, y, z, w; }; #endif // ============================================================================ // Vector4 class (SSE version). #ifdef LC_MATH_SSE // If you can't find this file you need to install the VS6 Processor Pack. #include class __declspec(align(16)) Vector4 { public: // Constructors. inline Vector4() { } inline explicit Vector4(const __m128& _xyzw) : xyzw(_xyzw) { } inline explicit Vector4(const float _x, const float _y, const float _z) : xyzw(_mm_setr_ps(_x, _y, _z, _z)) { } inline explicit Vector4(const float _x, const float _y, const float _z, const float _w) : xyzw(_mm_setr_ps(_x, _y, _z, _w)) { } inline float& operator[](int i) const { return ((const float*)this)[i]; } // Comparison. friend inline bool operator==(const Vector4& a, const Vector4& b) { return !_mm_movemask_ps(_mm_cmpneq_ps(a.xyzw, b.xyzw)); } friend inline bool Compare3(const Vector4& a, const Vector4& b) { return (_mm_movemask_ps(_mm_cmpeq_ps(a.xyzw, b.xyzw)) & 0x7) == 0x7; } // Math operations for 4 components. friend inline Vector4 operator+(const Vector4& a, const Vector4& b) { return Vector4(_mm_add_ps(a.xyzw, b.xyzw)); } friend inline Vector4 operator-(const Vector4& a, const Vector4& b) { return Vector4(_mm_sub_ps(a.xyzw, b.xyzw)); } friend inline Vector4 operator*(const Vector4& a, float f) { return Vector4(_mm_mul_ps(a.xyzw, _mm_load_ps1(&f))); } friend inline Vector4 operator*(const Vector4& a, const Vector4& b) { return Vector4(_mm_mul_ps(a.xyzw, b.xyzw)); } friend inline Vector4 operator/(const Vector4& a, float f) { return Vector4(_mm_div_ps(a.xyzw, _mm_load_ps1(&f))); } friend inline Vector4 operator-(const Vector4& a) { static const __declspec(align(16)) unsigned int Mask[4] = { 0x80000000, 0x80000000, 0x80000000, 0x80000000 } return Vector4(_mm_xor_ps(xyzw, *(__m128*)&Mask)); } // Math operations ignoring the 4th component. friend inline Vector4 Add34(const Vector4& a, const Vector4& b) { return a*b } friend inline Vector4 Subtract34(const Vector4& a, const Vector4& b) { return a-b; } friend inline Vector4 Multiply34(const Vector4& a, float f) { return a*f; } friend inline Vector4 Multiply34(const Vector4& a, const Vector4& b) { return a*b; } friend inline Vector4 Divide34(const Vector4& a, float f) { return a/f; } friend inline Vector4 Negate34(const Vector4& a) { return -a; } // Dot product. friend inline float Dot3(const Vector4& a, const Vector4& b) { __m128 tmp = _mm_mul_ps(a.xyzw, b.xyzw); __m128 yz = _mm_add_ss(_mm_shuffle_ps(tmp, tmp, _MM_SHUFFLE(1, 1, 1, 1)), _mm_shuffle_ps(tmp, tmp, _MM_SHUFFLE(2, 2, 2, 2))); tmp = _mm_add_ss(tmp, yz); return *(const float*)&tmp; } // Cross product. friend inline Vector4 Cross3(const Vector4& a, const Vector4& b) { // a(yzx)*b(zxy)-a(zxy)*b(yzx) __m128 r1 = _mm_mul_ps(_mm_shuffle_ps(a.xyzw, a.xyzw, _MM_SHUFFLE(0, 0, 2, 1)), _mm_shuffle_ps(b.xyzw, b.xyzw, _MM_SHUFFLE(0, 1, 0, 2))); __m128 r2 = _mm_mul_ps(_mm_shuffle_ps(a.xyzw, a.xyzw, _MM_SHUFFLE(0, 1, 0, 2)), _mm_shuffle_ps(b.xyzw, b.xyzw, _MM_SHUFFLE(0, 0, 2, 1))); return Vector4(_mm_sub_ps(r1, r2)); } // Other functions. inline float Length3() const { __m128 tmp = _mm_mul_ps(xyzw, xyzw); __m128 yz = _mm_add_ss(_mm_shuffle_ps(tmp, tmp, _MM_SHUFFLE(1, 1, 1, 1)), _mm_shuffle_ps(tmp, tmp, _MM_SHUFFLE(2, 2, 2, 2))); tmp = _mm_add_ss(tmp, yz); tmp = _mm_sqrt_ss(tmp); return *(const float*)&tmp; } inline void Normalize34() { __m128 tmp = _mm_mul_ps(xyzw, xyzw); __m128 yz = _mm_add_ss(_mm_shuffle_ps(tmp, tmp, _MM_SHUFFLE(1, 1, 1, 1)), _mm_shuffle_ps(tmp, tmp, _MM_SHUFFLE(2, 2, 2, 2))); tmp = _mm_add_ss(tmp, yz); tmp = _mm_rsqrt_ss(tmp); tmp = _mm_shuffle_ps(tmp, tmp, _MM_SHUFFLE(0, 0, 0, 0)); xyzw = _mm_mul_ps(xyzw, tmp); } inline void Abs() { static const __declspec(align(16)) unsigned int Mask[4] = { 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff } xyzw = _mm_and_ps(xyzw, *(__m128*)&Mask); } protected: __m128 xyzw; }; #endif // ============================================================================ // 3D Vector class. class Vector3 { public: // Constructors. inline Vector3() { } inline explicit Vector3(const Vector4& _v) : m_Value(_v) { } inline explicit Vector3(const float _x, const float _y, const float _z) : m_Value(_x, _y, _z) { } inline operator const float*() const { return (const float*)this; } inline operator float*() { return (float*)this; } inline const Vector4& GetValue() const { return m_Value; } inline operator const Vector4() const { return Vector4(m_Value[0], m_Value[1], m_Value[2], 0.0f); } inline float& operator[](int i) const { return m_Value[i]; } // Math operations. friend inline Vector3 operator+=(Vector3& a, const Vector3& b) { a.m_Value = a.m_Value + b.m_Value; return a; } friend inline Vector3 operator*=(Vector3& a, float b) { a.m_Value = a.m_Value * b; return a; } friend inline Vector3 operator/=(Vector3& a, float b) { a.m_Value = a.m_Value / b; return a; } // Other functions. inline float Length() const { return m_Value.Length3(); } inline float LengthSquared() const { return Dot3(m_Value, m_Value); } inline const Vector3& Normalize() { m_Value.Normalize34(); return *this; } inline void Abs() { m_Value.Abs34(); } protected: Vector4 m_Value; }; // ============================================================================ // Operators. // Comparison. inline bool operator==(const Vector3& a, const Vector3& b) { return Compare3(a.GetValue(), b.GetValue()); } // Multiply by a scalar. inline Vector3 operator*(const Vector3& a, float f) { return Vector3(Multiply34(a.GetValue(), f)); } inline Vector3 operator*(float f, const Vector3& a) { return Vector3(Multiply34(a.GetValue(), f)); } // Divide by a scalar. inline Vector3 operator/(const Vector3& a, float f) { return Vector3(Divide34(a.GetValue(), f)); } inline Vector3 operator/(float f, const Vector3& a) { return Vector3(Divide34(a.GetValue(), f)); } // Add vectors. inline Vector3 operator+(const Vector3& a, const Vector3& b) { return Vector3(Add34(a.GetValue(), b.GetValue())); } // Subtract vectors. inline Vector3 operator-(const Vector3& a, const Vector3& b) { return Vector3(Subtract34(a.GetValue(), b.GetValue())); } // Negate. inline Vector3 operator-(const Vector3& a) { return Vector3(Negate34(a.GetValue())); } // Dot product. inline float Dot3(const Vector3& a, const Vector3& b) { return Dot3(a.GetValue(), b.GetValue()); } // Cross product. inline Vector3 Cross3(const Vector3& a, const Vector3& b) { return Vector3(Cross3(a.GetValue(), b.GetValue())); } // ============================================================================ // Quaternion class. class Quaternion { public: // Constructors. inline Quaternion() { } inline explicit Quaternion(const Vector4& _v) : m_Value(_v) { } inline explicit Quaternion(const float _x, const float _y, const float _z, const float _w) : m_Value(_x, _y, _z, _w) { } // Get/Set functions. inline const float operator[](int i) const { return m_Value[i]; } // Conversions. inline void FromAxisAngle(const Vector4& AxisAngle) { float s = sinf(AxisAngle[3] / 2.0f); m_Value = Vector4(AxisAngle[0] * s, AxisAngle[1] * s, AxisAngle[2] * s, cosf(AxisAngle[3] / 2.0f)); } inline void CreateRotationX(float Radians) { m_Value = Vector4(sinf(Radians / 2.0f), 0, 0, cosf(Radians / 2.0f)); } inline void CreateRotationY(float Radians) { m_Value = Vector4(0, sinf(Radians / 2.0f), 0, cosf(Radians / 2.0f)); } inline void CreateRotationZ(float Radians) { m_Value = Vector4(0, 0, sinf(Radians / 2.0f), cosf(Radians / 2.0f)); } inline void ToAxisAngle(Vector4& AxisAngle) const { float Len = m_Value[0]*m_Value[0] + m_Value[1]*m_Value[1] + m_Value[2]*m_Value[2]; if (Len > 0.0001f) { float f = 1.0f / sqrtf(Len); AxisAngle = Vector4(m_Value[0] * f, m_Value[1] * f, m_Value[2] * f, acosf(m_Value[3]) * 2.0f); } else { AxisAngle = Vector4(0, 0, 1, 0); } } // Operators. friend inline Quaternion Mul(const Quaternion& a, const Quaternion& b) { float x = a.m_Value[0] * b.m_Value[3] + a.m_Value[1] * b.m_Value[2] - a.m_Value[2] * b.m_Value[1] + a.m_Value[3] * b.m_Value[0]; float y = -a.m_Value[0] * b.m_Value[2] + a.m_Value[1] * b.m_Value[3] + a.m_Value[2] * b.m_Value[0] + a.m_Value[3] * b.m_Value[1]; float z = a.m_Value[0] * b.m_Value[1] - a.m_Value[1] * b.m_Value[0] + a.m_Value[2] * b.m_Value[3] + a.m_Value[3] * b.m_Value[2]; float w = -a.m_Value[0] * b.m_Value[0] - a.m_Value[1] * b.m_Value[1] - a.m_Value[2] * b.m_Value[2] + a.m_Value[3] * b.m_Value[3]; return Quaternion(x, y, z, w); } friend inline Vector3 Mul(const Vector3& a, const Quaternion& b) { // Faster to transform to a matrix and multiply. float Tx = 2.0f*b[0]; float Ty = 2.0f*b[1]; float Tz = 2.0f*b[2]; float Twx = Tx*b[3]; float Twy = Ty*b[3]; float Twz = Tz*b[3]; float Txx = Tx*b[0]; float Txy = Ty*b[0]; float Txz = Tz*b[0]; float Tyy = Ty*b[1]; float Tyz = Tz*b[1]; float Tzz = Tz*b[2]; Vector3 Rows[3]; Rows[0] = Vector3(1.0f-(Tyy+Tzz), Txy+Twz, Txz-Twy); Rows[1] = Vector3(Txy-Twz, 1.0f-(Txx+Tzz), Tyz+Twx); Rows[2] = Vector3(Txz+Twy, Tyz-Twx, 1.0f-(Txx+Tyy)); return Vector3(Rows[0].GetValue()*a[0] + Rows[1].GetValue()*a[1] + Rows[2].GetValue()*a[2]); } protected: Vector4 m_Value; }; // ============================================================================ // 3x3 Matrix class. class Matrix33 { public: // Constructors. inline Matrix33() { } inline Matrix33(const Vector3& Row0, const Vector3& Row1, const Vector3& Row2) { m_Rows[0] = Row0; m_Rows[1] = Row1; m_Rows[2] = Row2; } inline void LoadIdentity() { m_Rows[0] = Vector3(1.0f, 0.0f, 0.0f); m_Rows[1] = Vector3(0.0f, 1.0f, 0.0f); m_Rows[2] = Vector3(0.0f, 0.0f, 1.0f); } inline void CreateFromAxisAngle(const Vector3& Axis, const float Radians) { float s, c, mag, xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c; s = sinf(Radians); c = cosf(Radians); mag = Axis.Length(); if (mag == 0.0f) { LoadIdentity(); return; } Vector3 Normal = Axis * (1.0f / mag); xx = Normal[0] * Normal[0]; yy = Normal[1] * Normal[1]; zz = Normal[2] * Normal[2]; xy = Normal[0] * Normal[1]; yz = Normal[1] * Normal[2]; zx = Normal[2] * Normal[0]; xs = Normal[0] * s; ys = Normal[1] * s; zs = Normal[2] * s; one_c = 1.0f - c; m_Rows[0] = Vector3((one_c * xx) + c, (one_c * xy) + zs, (one_c * zx) - ys); m_Rows[1] = Vector3((one_c * xy) - zs, (one_c * yy) + c, (one_c * yz) + xs); m_Rows[2] = Vector3((one_c * zx) + ys, (one_c * yz) - xs, (one_c * zz) + c); } friend inline Vector3 Mul(const Vector3& a, const Matrix33& b) { return Vector3(b.m_Rows[0]*a[0] + b.m_Rows[1]*a[1] + b.m_Rows[2]*a[2]); } protected: Vector3 m_Rows[3]; friend class Matrix44; }; // ============================================================================ // 4x4 Matrix class. class Matrix44 { public: inline Matrix44() { } inline Matrix44(const Vector4& Row0, const Vector4& Row1, const Vector4& Row2, const Vector4& Row3) { m_Rows[0] = Row0; m_Rows[1] = Row1; m_Rows[2] = Row2; m_Rows[3] = Row3; } inline operator const float*() const { return (const float*)this; } inline const Vector4& operator[](int i) const { return m_Rows[i]; } inline Vector4& operator[](int i) { return m_Rows[i]; } inline void LoadIdentity() { m_Rows[0] = Vector4(1.0f, 0.0f, 0.0f, 0.0f); m_Rows[1] = Vector4(0.0f, 1.0f, 0.0f, 0.0f); m_Rows[2] = Vector4(0.0f, 0.0f, 1.0f, 0.0f); m_Rows[3] = Vector4(0.0f, 0.0f, 0.0f, 1.0f); } // Math operations. friend inline Vector3 Mul31(const Vector3& a, const Matrix44& b) { return Vector3(b.m_Rows[0]*a[0] + b.m_Rows[1]*a[1] + b.m_Rows[2]*a[2] + b.m_Rows[3]); } friend inline Vector3 Mul30(const Vector3& a, const Matrix44& b) { return Vector3(b.m_Rows[0]*a[0] + b.m_Rows[1]*a[1] + b.m_Rows[2]*a[2]); } friend inline Vector4 Mul4(const Vector4& a, const Matrix44& b) { return Vector4(b.m_Rows[0]*a[0] + b.m_Rows[1]*a[1] + b.m_Rows[2]*a[2] + b.m_Rows[3]*a[3]); } friend inline Matrix44 Mul(const Matrix44& a, const Matrix44& b) { Vector4 Col0(b.m_Rows[0][0], b.m_Rows[1][0], b.m_Rows[2][0], b.m_Rows[3][0]); Vector4 Col1(b.m_Rows[0][1], b.m_Rows[1][1], b.m_Rows[2][1], b.m_Rows[3][1]); Vector4 Col2(b.m_Rows[0][2], b.m_Rows[1][2], b.m_Rows[2][2], b.m_Rows[3][2]); Vector4 Col3(b.m_Rows[0][3], b.m_Rows[1][3], b.m_Rows[2][3], b.m_Rows[3][3]); Vector4 Ret0(Dot4(a.m_Rows[0], Col0), Dot4(a.m_Rows[0], Col1), Dot4(a.m_Rows[0], Col2), Dot4(a.m_Rows[0], Col3)); Vector4 Ret1(Dot4(a.m_Rows[1], Col0), Dot4(a.m_Rows[1], Col1), Dot4(a.m_Rows[1], Col2), Dot4(a.m_Rows[1], Col3)); Vector4 Ret2(Dot4(a.m_Rows[2], Col0), Dot4(a.m_Rows[2], Col1), Dot4(a.m_Rows[2], Col2), Dot4(a.m_Rows[2], Col3)); Vector4 Ret3(Dot4(a.m_Rows[3], Col0), Dot4(a.m_Rows[3], Col1), Dot4(a.m_Rows[3], Col2), Dot4(a.m_Rows[3], Col3)); return Matrix44(Ret0, Ret1, Ret2, Ret3); } inline Matrix44& operator=(const Matrix33& a) { m_Rows[0] = Vector4(a.m_Rows[0][0], a.m_Rows[0][1], a.m_Rows[0][2], 0.0f); m_Rows[1] = Vector4(a.m_Rows[1][0], a.m_Rows[1][1], a.m_Rows[1][2], 0.0f); m_Rows[2] = Vector4(a.m_Rows[2][0], a.m_Rows[2][1], a.m_Rows[2][2], 0.0f); m_Rows[3] = Vector4(0.0f, 0.0f, 0.0f, 1.0f); return *this; } inline void Transpose3() { Vector4 a = m_Rows[0], b = m_Rows[1], c = m_Rows[2]; m_Rows[0] = Vector4(a[0], b[0], c[0], a[3]); m_Rows[1] = Vector4(a[1], b[1], c[1], b[3]); m_Rows[2] = Vector4(a[2], b[2], c[2], c[3]); } inline void SetTranslation(const Vector3& a) { m_Rows[3] = Vector4(a[0], a[1], a[2], 1.0f); } friend Matrix44 Inverse(const Matrix44& m); void CreateLookAt(const Vector3& Eye, const Vector3& Target, const Vector3& Up); void CreatePerspective(float FoVy, float Aspect, float Near, float Far); void CreateOrtho(float Left, float Right, float Bottom, float Top, float Near, float Far); void CreateFromAxisAngle(const Vector3& Axis, float Radians) { Matrix33 Mat; Mat.CreateFromAxisAngle(Axis, Radians); *this = Mat; } Vector4 ToAxisAngle() { Matrix33 tmp(Vector3(m_Rows[0]).Normalize(), Vector3(m_Rows[1]).Normalize(), Vector3(m_Rows[2]).Normalize()); // Determinant should be 1 for rotation matrices. float Determinant = tmp.m_Rows[0][0] * tmp.m_Rows[1][1] * tmp.m_Rows[2][2] + tmp.m_Rows[0][1] * tmp.m_Rows[1][2] * tmp.m_Rows[2][0] + tmp.m_Rows[0][2] * tmp.m_Rows[1][0] * tmp.m_Rows[2][1] - tmp.m_Rows[0][0] * tmp.m_Rows[1][2] * tmp.m_Rows[2][1] - tmp.m_Rows[0][1] * tmp.m_Rows[1][0] * tmp.m_Rows[2][2] - tmp.m_Rows[0][2] * tmp.m_Rows[1][1] * tmp.m_Rows[2][0]; if (Determinant < 0.0f) tmp.m_Rows[0] *= -1.0f; float Trace = tmp.m_Rows[0][0] + tmp.m_Rows[1][1] + tmp.m_Rows[2][2]; float Cos = 0.5f * (Trace - 1.0f); Vector4 rot; if (Cos < -1.0f) Cos = -1.0f; else if (Cos > 1.0f) Cos = 1.0f; rot[3] = acosf(Cos); // in [0,PI] if (rot[3] > 0.01f) { if (fabsf(3.141592f - rot[3]) > 0.01f) { rot[0] = tmp.m_Rows[1][2] - tmp.m_Rows[2][1]; rot[1] = tmp.m_Rows[2][0] - tmp.m_Rows[0][2]; rot[2] = tmp.m_Rows[0][1] - tmp.m_Rows[1][0]; float inv = 1.0f / sqrtf(rot[0]*rot[0] + rot[1]*rot[1] + rot[2]*rot[2]); rot[0] *= inv; rot[1] *= inv; rot[2] *= inv; } else { // angle is PI float HalfInverse; if (tmp.m_Rows[0][0] >= tmp.m_Rows[1][1]) { // r00 >= r11 if (tmp.m_Rows[0][0] >= tmp.m_Rows[2][2]) { // r00 is maximum diagonal term rot[0] = 0.5f * sqrtf(tmp.m_Rows[0][0] - tmp.m_Rows[1][1] - tmp.m_Rows[2][2] + 1.0f); HalfInverse = 0.5f / rot[0]; rot[1] = HalfInverse * tmp.m_Rows[1][0]; rot[2] = HalfInverse * tmp.m_Rows[2][0]; } else { // r22 is maximum diagonal term rot[2] = 0.5f * sqrtf(tmp.m_Rows[2][2] - tmp.m_Rows[0][0] - tmp.m_Rows[1][1] + 1.0f); HalfInverse = 0.5f / rot[2]; rot[0] = HalfInverse * tmp.m_Rows[2][0]; rot[1] = HalfInverse * tmp.m_Rows[2][1]; } } else { // r11 > r00 if (tmp.m_Rows[1][1] >= tmp.m_Rows[2][2]) { // r11 is maximum diagonal term rot[1] = 0.5f * sqrtf(tmp.m_Rows[1][1] - tmp.m_Rows[0][0] - tmp.m_Rows[2][2] + 1.0f); HalfInverse = 0.5f / rot[1]; rot[0] = HalfInverse * tmp.m_Rows[1][0]; rot[2] = HalfInverse * tmp.m_Rows[2][1]; } else { // r22 is maximum diagonal term rot[2] = 0.5f * sqrtf(tmp.m_Rows[2][2] - tmp.m_Rows[0][0] - tmp.m_Rows[1][1] + 1.0f); HalfInverse = 0.5f / rot[2]; rot[0] = HalfInverse * tmp.m_Rows[2][0]; rot[1] = HalfInverse * tmp.m_Rows[2][1]; } } } } else { // The angle is 0 and the matrix is the identity. rot[0] = 0.0f; rot[1] = 0.0f; rot[2] = 1.0f; } return rot; } protected: Vector4 m_Rows[4]; }; // ============================================================================ // Linear Algebra Functions. Vector3 ZoomExtents(const Vector3& Position, const Matrix44& WorldView, const Matrix44& Projection, const Vector3* Points, int NumPoints); Vector3 ProjectPoint(const Vector3& Point, const Matrix44& ModelView, const Matrix44& Projection, const int Viewport[4]); void ProjectPoints(Vector3* Points, int NumPoints, const Matrix44& ModelView, const Matrix44& Projection, const int Viewport[4]); Vector3 UnprojectPoint(const Vector3& Point, const Matrix44& ModelView, const Matrix44& Projection, const int Viewport[4]); void UnprojectPoints(Vector3* Points, int NumPoints, const Matrix44& ModelView, const Matrix44& Projection, const int Viewport[4]); void PolygonPlaneClip(Vector3* InPoints, int NumInPoints, Vector3* OutPoints, int* NumOutPoints, const Vector4& Plane); bool LinePlaneIntersection(Vector3& Intersection, const Vector3& Start, const Vector3& End, const Vector4& Plane); bool LineTriangleMinIntersection(const Vector3& p1, const Vector3& p2, const Vector3& p3, const Vector3& Start, const Vector3& End, float& MinDist, Vector3& Intersection); bool LineQuadMinIntersection(const Vector3& p1, const Vector3& p2, const Vector3& p3, const Vector3& p4, const Vector3& Start, const Vector3& End, float& MinDist, Vector3& Intersection); #endif