#ifndef _LC_MATH_H_ #define _LC_MATH_H_ #include #include #define LC_DTOR 0.017453f #define LC_RTOD 57.29578f #define LC_PI 3.141592f #define LC_2PI 6.283185f template inline T lcMin(const T& a, const U& b) { return a < b ? a : b; } template inline T lcMax(const T& a, const U& b) { return a > b ? a : b; } template inline T lcClamp(const T& Value, const U& Min, const V& Max) { if (Value > Max) return Max; else if (Value < Min) return Min; else return Value; } class lcVector2 { public: lcVector2() { } lcVector2(const float _x, const float _y) : x(_x), y(_y) { } lcVector2(const lcVector2& a) : x(a.x), y(a.y) { } operator const float*() const { return (const float*)this; } operator float*() { return (float*)this; } const float& operator[](int i) const { return ((float*)this)[i]; } float& operator[](int i) { return ((float*)this)[i]; } float x, y; }; class lcVector3 { public: lcVector3() { } lcVector3(const float _x, const float _y, const float _z) : x(_x), y(_y), z(_z) { } lcVector3(const lcVector3& a) : x(a.x), y(a.y), z(a.z) { } operator const float*() const { return (const float*)this; } operator float*() { return (float*)this; } const float& operator[](int i) const { return ((float*)this)[i]; } float& operator[](int i) { return ((float*)this)[i]; } void Normalize(); float Length() const; float LengthSquared() const; float x, y, z; }; class lcVector4 { public: lcVector4() { } lcVector4(const float _x, const float _y, const float _z, const float _w) : x(_x), y(_y), z(_z), w(_w) { } lcVector4(const lcVector3& _xyz, const float _w) : x(_xyz.x), y(_xyz.y), z(_xyz.z), w(_w) { } operator const float*() const { return (const float*)this; } operator float*() { return (float*)this; } const float& operator[](int i) const { return ((float*)this)[i]; } float& operator[](int i) { return ((float*)this)[i]; } float x, y, z, w; }; class lcMatrix44 { public: lcMatrix44() { } lcMatrix44(const lcVector4& _x, const lcVector4& _y, const lcVector4& _z, const lcVector4& _w) { r[0] = _x; r[1] = _y; r[2] = _z; r[3] = _w; } void SetTranslation(const lcVector3& Translation) { r[3] = lcVector4(Translation[0], Translation[1], Translation[2], 1.0f); } operator const float*() const { return (const float*)this; } operator float*() { return (float*)this; } const lcVector4& operator[](int i) const { return r[i]; } lcVector4& operator[](int i) { return r[i]; } lcVector4 r[4]; }; inline lcVector3 operator+(const lcVector3& a, const lcVector3& b) { return lcVector3(a.x + b.x, a.y + b.y, a.z + b.z); } inline lcVector3 operator-(const lcVector3& a, const lcVector3& b) { return lcVector3(a.x - b.x, a.y - b.y, a.z - b.z); } inline lcVector3 operator*(const lcVector3& a, const lcVector3& b) { return lcVector3(a.x * b.x, a.y * b.y, a.z * b.z); } inline lcVector3 operator/(const lcVector3& a, const lcVector3& b) { return lcVector3(a.x / b.x, a.y / b.y, a.z / b.z); } inline lcVector3 operator*(const lcVector3& a, float b) { return lcVector3(a.x * b, a.y * b, a.z * b); } inline lcVector3 operator/(const lcVector3& a, float b) { return lcVector3(a.x / b, a.y / b, a.z / b); } inline lcVector3 operator*(float a, const lcVector3& b) { return lcVector3(b.x * a, b.y * a, b.z * a); } inline lcVector3 operator/(float a, const lcVector3& b) { return lcVector3(b.x / a, b.y / a, b.z / a); } inline lcVector3 operator-(const lcVector3& a) { return lcVector3(-a.x, -a.y, -a.z); } inline lcVector3& operator+=(lcVector3& a, const lcVector3& b) { a.x += b.x; a.y += b.y; a.z += b.z; return a; } inline lcVector3& operator-=(lcVector3& a, const lcVector3& b) { a.x -= b.x; a.y -= b.y; a.z -= b.z; return a; } inline lcVector3& operator*=(lcVector3& a, const lcVector3& b) { a.x *= b.x; a.y *= b.y; a.z *= b.z; return a; } inline lcVector3& operator/=(lcVector3& a, const lcVector3& b) { a.x /= b.x; a.y /= b.y; a.z /= b.z; return a; } inline lcVector3& operator*=(lcVector3& a, float b) { a.x *= b; a.y *= b; a.z *= b; return a; } inline lcVector3& operator/=(lcVector3& a, float b) { a.x /= b; a.y /= b; a.z /= b; return a; } inline bool operator==(const lcVector3& a, const lcVector3& b) { return a.x == b.x && a.y == b.y && a.z == b.z; } inline void lcVector3::Normalize() { float InvLength = 1.0f / Length(); x *= InvLength; y *= InvLength; z *= InvLength; } inline float lcVector3::Length() const { return sqrtf(x * x + y * y + z * z); } inline float lcVector3::LengthSquared() const { return x * x + y * y + z * z; } inline float lcLength(const lcVector3& a) { return a.Length(); } inline float lcLengthSquared(const lcVector3& a) { return a.LengthSquared(); } inline lcVector3 lcNormalize(const lcVector3& a) { lcVector3 Ret(a); Ret.Normalize(); return Ret; } inline float lcDot(const lcVector3& a, const lcVector3& b) { return a.x * b.x + a.y * b.y + a.z * b.z; } inline float lcDot3(const lcVector4& a, const lcVector3& b) { return a.x * b.x + a.y * b.y + a.z * b.z; } inline float lcDot3(const lcVector3& a, const lcVector4& b) { return a.x * b.x + a.y * b.y + a.z * b.z; } inline float lcDot3(const lcVector4& a, const lcVector4& b) { return a.x * b.x + a.y * b.y + a.z * b.z; } inline float lcDot(const lcVector4& a, const lcVector4& b) { return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w; } inline lcVector3 lcCross(const lcVector3& a, const lcVector3& b) { return lcVector3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x); } inline lcVector4 operator+(const lcVector4& a, const lcVector4& b) { return lcVector4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w); } inline lcVector4 operator-(const lcVector4& a, const lcVector4& b) { return lcVector4(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w); } inline lcVector4 operator*(const lcVector4& a, float f) { return lcVector4(a.x * f, a.y * f, a.z * f, a.w * f); } inline lcVector4 operator*(const lcVector4& a, const lcVector4& b) { return lcVector4(a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w); } inline lcVector4 operator/(const lcVector4& a, float f) { return lcVector4(a.x / f, a.y / f, a.z / f, a.w / f); } inline lcVector4 operator/(const lcVector4& a, const lcVector4& b) { return lcVector4(a.x / b.x, a.y / b.y, a.z / b.z, a.w / b.w); } inline lcVector4& operator+=(lcVector4& a, const lcVector4& b) { a.x += b.x; a.y += b.y; a.z += b.z; a.w += b.w; return a; } inline lcVector4& operator-=(lcVector4& a, const lcVector4& b) { a.x -= b.x; a.y -= b.y; a.z -= b.z; a.w -= b.w; return a; } inline lcVector4& operator*=(lcVector4& a, float b) { a.x *= b; a.y *= b; a.z *= b; a.w *= b; return a; } inline lcVector4& operator/=(lcVector4& a, float b) { a.x /= b; a.y /= b; a.z /= b; a.w /= b; return a; } inline lcVector3 lcMul31(const lcVector3& a, const lcMatrix44& b) { lcVector4 v = b.r[0] * a[0] + b.r[1] * a[1] + b.r[2] * a[2] + b.r[3]; return lcVector3(v[0], v[1], v[2]); } inline lcVector3 lcMul31(const lcVector4& a, const lcMatrix44& b) { lcVector4 v = b.r[0] * a[0] + b.r[1] * a[1] + b.r[2] * a[2] + b.r[3]; return lcVector3(v[0], v[1], v[2]); } inline lcVector3 lcMul30(const lcVector3& a, const lcMatrix44& b) { lcVector4 v = b.r[0] * a[0] + b.r[1] * a[1] + b.r[2] * a[2]; return lcVector3(v[0], v[1], v[2]); } inline lcVector3 lcMul30(const lcVector4& a, const lcMatrix44& b) { lcVector4 v = b.r[0] * a[0] + b.r[1] * a[1] + b.r[2] * a[2]; return lcVector3(v[0], v[1], v[2]); } inline lcVector4 lcMul4(const lcVector4& a, const lcMatrix44& b) { return b.r[0] * a[0] + b.r[1] * a[1] + b.r[2] * a[2] + b.r[3] * a[3]; } inline lcMatrix44 lcMul(const lcMatrix44& a, const lcMatrix44& b) { lcVector4 Col0(b.r[0][0], b.r[1][0], b.r[2][0], b.r[3][0]); lcVector4 Col1(b.r[0][1], b.r[1][1], b.r[2][1], b.r[3][1]); lcVector4 Col2(b.r[0][2], b.r[1][2], b.r[2][2], b.r[3][2]); lcVector4 Col3(b.r[0][3], b.r[1][3], b.r[2][3], b.r[3][3]); lcVector4 Ret0(lcDot(a.r[0], Col0), lcDot(a.r[0], Col1), lcDot(a.r[0], Col2), lcDot(a.r[0], Col3)); lcVector4 Ret1(lcDot(a.r[1], Col0), lcDot(a.r[1], Col1), lcDot(a.r[1], Col2), lcDot(a.r[1], Col3)); lcVector4 Ret2(lcDot(a.r[2], Col0), lcDot(a.r[2], Col1), lcDot(a.r[2], Col2), lcDot(a.r[2], Col3)); lcVector4 Ret3(lcDot(a.r[3], Col0), lcDot(a.r[3], Col1), lcDot(a.r[3], Col2), lcDot(a.r[3], Col3)); return lcMatrix44(Ret0, Ret1, Ret2, Ret3); } inline lcMatrix44 lcMatrix44Identity() { lcMatrix44 m; m.r[0] = lcVector4(1.0f, 0.0f, 0.0f, 0.0f); m.r[1] = lcVector4(0.0f, 1.0f, 0.0f, 0.0f); m.r[2] = lcVector4(0.0f, 0.0f, 1.0f, 0.0f); m.r[3] = lcVector4(0.0f, 0.0f, 0.0f, 1.0f); return m; } inline lcMatrix44 lcMatrix44Translation(const lcVector3& Translation) { lcMatrix44 m; m.r[0] = lcVector4(1.0f, 0.0f, 0.0f, 0.0f); m.r[1] = lcVector4(0.0f, 1.0f, 0.0f, 0.0f); m.r[2] = lcVector4(0.0f, 0.0f, 1.0f, 0.0f); m.r[3] = lcVector4(Translation[0], Translation[1], Translation[2], 1.0f); return m; } inline lcMatrix44 lcMatrix44RotationX(const float Radians) { float s, c; s = sinf(Radians); c = cosf(Radians); lcMatrix44 m; m.r[0] = lcVector4(1.0f, 0.0f, 0.0f, 0.0f); m.r[1] = lcVector4(0.0f, c, s, 0.0f); m.r[2] = lcVector4(0.0f, -s, c, 0.0f); m.r[3] = lcVector4(0.0f, 0.0f, 0.0f, 1.0f); return m; } inline lcMatrix44 lcMatrix44RotationY(const float Radians) { float s, c; s = sinf(Radians); c = cosf(Radians); lcMatrix44 m; m.r[0] = lcVector4( c, 0.0f, -s, 0.0f); m.r[1] = lcVector4(0.0f, 1.0f, 0.0f, 0.0f); m.r[2] = lcVector4( s, 0.0f, c, 0.0f); m.r[3] = lcVector4(0.0f, 0.0f, 0.0f, 1.0f); return m; } inline lcMatrix44 lcMatrix44RotationZ(const float Radians) { float s, c; s = sinf(Radians); c = cosf(Radians); lcMatrix44 m; m.r[0] = lcVector4( c, s, 0.0f, 0.0f); m.r[1] = lcVector4( -s, c, 0.0f, 0.0f); m.r[2] = lcVector4(0.0f, 0.0f, 1.0f, 0.0f); m.r[3] = lcVector4(0.0f, 0.0f, 0.0f, 1.0f); return m; } inline lcMatrix44 lcMatrix44LookAt(const lcVector3& Eye, const lcVector3& Target, const lcVector3& Up) { lcVector3 x, y, z; z = lcNormalize(Eye - Target); x = lcNormalize(lcCross(Up, z)); y = lcNormalize(lcCross(z, x)); lcMatrix44 m; m.r[0] = lcVector4(x[0], y[0], z[0], 0.0f); m.r[1] = lcVector4(x[1], y[1], z[1], 0.0f); m.r[2] = lcVector4(x[2], y[2], z[2], 0.0f); m.r[3] = m.r[0] * -Eye[0] + m.r[1] * -Eye[1] + m.r[2] * -Eye[2]; m.r[3][3] = 1.0f; return m; } inline lcMatrix44 lcMatrix44Perspective(float FoVy, float Aspect, float Near, float Far) { float Left, Right, Bottom, Top; Top = Near * (float)tan(FoVy * LC_PI / 360.0f); Bottom = -Top; Left = Bottom * Aspect; Right = Top * Aspect; if ((Near <= 0.0f) || (Far <= 0.0f) || (Near == Far) || (Left == Right) || (Top == Bottom)) return lcMatrix44Identity(); float x, y, a, b, c, d; x = (2.0f * Near) / (Right - Left); y = (2.0f * Near) / (Top - Bottom); a = (Right + Left) / (Right - Left); b = (Top + Bottom) / (Top - Bottom); c = -(Far + Near) / (Far - Near); d = -(2.0f * Far * Near) / (Far - Near); lcMatrix44 m; m.r[0] = lcVector4(x, 0, 0, 0); m.r[1] = lcVector4(0, y, 0, 0); m.r[2] = lcVector4(a, b, c, -1); m.r[3] = lcVector4(0, 0, d, 0); return m; } inline lcMatrix44 lcMatrix44Ortho(float Left, float Right, float Bottom, float Top, float Near, float Far) { lcMatrix44 m; m.r[0] = lcVector4(2.0f / (Right-Left), 0.0f, 0.0f, 0.0f), m.r[1] = lcVector4(0.0f, 2.0f / (Top-Bottom), 0.0f, 0.0f), m.r[2] = lcVector4(0.0f, 0.0f, -2.0f / (Far-Near), 0.0f), m.r[3] = lcVector4(-(Right+Left) / (Right-Left), -(Top+Bottom) / (Top-Bottom), -(Far+Near) / (Far-Near), 1.0f); return m; } inline lcMatrix44 lcMatrix44FromAxisAngle(const lcVector3& Axis, const float Radians) { float s, c, mag, xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c; s = sinf(Radians); c = cosf(Radians); mag = Axis.Length(); if (mag == 0.0f) return lcMatrix44Identity(); lcVector3 Normal = Axis * (1.0f / mag); xx = Normal[0] * Normal[0]; yy = Normal[1] * Normal[1]; zz = Normal[2] * Normal[2]; xy = Normal[0] * Normal[1]; yz = Normal[1] * Normal[2]; zx = Normal[2] * Normal[0]; xs = Normal[0] * s; ys = Normal[1] * s; zs = Normal[2] * s; one_c = 1.0f - c; lcMatrix44 m; m.r[0] = lcVector4((one_c * xx) + c, (one_c * xy) + zs, (one_c * zx) - ys, 0.0f); m.r[1] = lcVector4((one_c * xy) - zs, (one_c * yy) + c, (one_c * yz) + xs, 0.0f); m.r[2] = lcVector4((one_c * zx) + ys, (one_c * yz) - xs, (one_c * zz) + c, 0.0f); m.r[3] = lcVector4(0.0f, 0.0f, 0.0f, 1.0f); return m; } inline lcVector4 lcMatrix44ToAxisAngle(const lcMatrix44& m) { lcVector3 Rows[3]; Rows[0] = lcNormalize(lcVector3(m.r[0][0], m.r[0][1], m.r[0][2])); Rows[1] = lcNormalize(lcVector3(m.r[1][0], m.r[1][1], m.r[1][2])); Rows[2] = lcNormalize(lcVector3(m.r[2][0], m.r[2][1], m.r[2][2])); // Determinant should be 1 for rotation matrices. float Determinant = Rows[0][0] * Rows[1][1] * Rows[2][2] + Rows[0][1] * Rows[1][2] * Rows[2][0] + Rows[0][2] * Rows[1][0] * Rows[2][1] - Rows[0][0] * Rows[1][2] * Rows[2][1] - Rows[0][1] * Rows[1][0] * Rows[2][2] - Rows[0][2] * Rows[1][1] * Rows[2][0]; if (Determinant < 0.0f) Rows[0] *= -1.0f; float Trace = Rows[0][0] + Rows[1][1] + Rows[2][2]; float Cos = 0.5f * (Trace - 1.0f); lcVector4 rot; rot[3] = acosf(lcClamp(Cos, -1.0f, 1.0f)); // in [0,PI] if (rot[3] > 0.01f) { if (fabsf(LC_PI - rot[3]) > 0.01f) { rot[0] = Rows[1][2] - Rows[2][1]; rot[1] = Rows[2][0] - Rows[0][2]; rot[2] = Rows[0][1] - Rows[1][0]; float inv = 1.0f / sqrtf(rot[0]*rot[0] + rot[1]*rot[1] + rot[2]*rot[2]); rot[0] *= inv; rot[1] *= inv; rot[2] *= inv; } else { // angle is PI float HalfInverse; if (Rows[0][0] >= Rows[1][1]) { // r00 >= r11 if (Rows[0][0] >= Rows[2][2]) { // r00 is maximum diagonal term rot[0] = 0.5f * sqrtf(Rows[0][0] - Rows[1][1] - Rows[2][2] + 1.0f); HalfInverse = 0.5f / rot[0]; rot[1] = HalfInverse * Rows[1][0]; rot[2] = HalfInverse * Rows[2][0]; } else { // r22 is maximum diagonal term rot[2] = 0.5f * sqrtf(Rows[2][2] - Rows[0][0] - Rows[1][1] + 1.0f); HalfInverse = 0.5f / rot[2]; rot[0] = HalfInverse * Rows[2][0]; rot[1] = HalfInverse * Rows[2][1]; } } else { // r11 > r00 if (Rows[1][1] >= Rows[2][2]) { // r11 is maximum diagonal term rot[1] = 0.5f * sqrtf(Rows[1][1] - Rows[0][0] - Rows[2][2] + 1.0f); HalfInverse = 0.5f / rot[1]; rot[0] = HalfInverse * Rows[1][0]; rot[2] = HalfInverse * Rows[2][1]; } else { // r22 is maximum diagonal term rot[2] = 0.5f * sqrtf(Rows[2][2] - Rows[0][0] - Rows[1][1] + 1.0f); HalfInverse = 0.5f / rot[2]; rot[0] = HalfInverse * Rows[2][0]; rot[1] = HalfInverse * Rows[2][1]; } } } } else { // The angle is 0 and the matrix is the identity. rot[0] = 0.0f; rot[1] = 0.0f; rot[2] = 1.0f; } return rot; } inline lcMatrix44 lcMatrix44FromEulerAngles(const lcVector3& Radians) { float CosYaw, SinYaw, CosPitch, SinPitch, CosRoll, SinRoll; CosRoll = cosf(Radians[0]); SinRoll = sinf(Radians[0]); CosPitch = cosf(Radians[1]); SinPitch = sinf(Radians[1]); CosYaw = cosf(Radians[2]); SinYaw = sinf(Radians[2]); lcMatrix44 m; m.r[0] = lcVector4(CosYaw * CosPitch, SinYaw * CosPitch, -SinPitch, 0.0f); m.r[1] = lcVector4(CosYaw * SinPitch * SinRoll - SinYaw * CosRoll, CosYaw * CosRoll + SinYaw * SinPitch * SinRoll, CosPitch * SinRoll, 0.0f); m.r[2] = lcVector4(CosYaw * SinPitch * CosRoll + SinYaw * SinRoll, SinYaw * SinPitch * CosRoll - CosYaw * SinRoll, CosPitch * CosRoll, 0.0f); m.r[3] = lcVector4(0.0f, 0.0f, 0.0f, 1.0f); return m; } inline lcVector3 lcMatrix44ToEulerAngles(const lcMatrix44& RotMat) { float SinPitch, CosPitch, SinRoll, CosRoll, SinYaw, CosYaw; SinPitch = -RotMat.r[0][2]; CosPitch = sqrtf(1 - SinPitch*SinPitch); if (fabsf(CosPitch) > 0.0005f) { SinRoll = RotMat.r[1][2] / CosPitch; CosRoll = RotMat.r[2][2] / CosPitch; SinYaw = RotMat.r[0][1] / CosPitch; CosYaw = RotMat.r[0][0] / CosPitch; } else { SinRoll = -RotMat.r[2][1]; CosRoll = RotMat.r[1][1]; SinYaw = 0.0f; CosYaw = 1.0f; } lcVector3 Rot(atan2f(SinRoll, CosRoll), atan2f(SinPitch, CosPitch), atan2f(SinYaw, CosYaw)); if (Rot[0] < 0) Rot[0] += LC_2PI; if (Rot[1] < 0) Rot[1] += LC_2PI; if (Rot[2] < 0) Rot[2] += LC_2PI; return Rot; } inline lcMatrix44 lcMatrix44Transpose(const lcMatrix44& m) { lcMatrix44 t; t.r[0] = lcVector4(m[0][0], m[1][0], m[2][0], m[3][0]); t.r[1] = lcVector4(m[0][1], m[1][1], m[2][1], m[3][1]); t.r[2] = lcVector4(m[0][2], m[1][2], m[2][2], m[3][2]); t.r[3] = lcVector4(m[0][3], m[1][3], m[2][3], m[3][3]); return t; } inline lcMatrix44 lcMatrix44AffineInverse(const lcMatrix44& m) { lcMatrix44 Inv; Inv.r[0] = lcVector4(m.r[0][0], m.r[1][0], m.r[2][0], m.r[0][3]); Inv.r[1] = lcVector4(m.r[0][1], m.r[1][1], m.r[2][1], m.r[1][3]); Inv.r[2] = lcVector4(m.r[0][2], m.r[1][2], m.r[2][2], m.r[2][3]); lcVector3 Trans = -lcMul30(m.r[3], Inv); Inv.r[3] = lcVector4(Trans[0], Trans[1], Trans[2], 1.0f); return Inv; } // Inverse code from the GLU library. inline lcMatrix44 lcMatrix44Inverse(const lcMatrix44& m) { #define SWAP_ROWS(a, b) { float *_tmp = a; (a)=(b); (b)=_tmp; } #define MAT(m,col,row) m.r[row][col] float wtmp[4][8]; float m0, m1, m2, m3, s; float *r0, *r1, *r2, *r3; r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1), r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3), r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1), r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3), r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1), r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3), r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1), r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3), r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; // choose pivot - or die if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2); if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1); if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0); // if (0.0 == r0[0]) return GL_FALSE; // eliminate first variable m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0]; s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s; s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s; s = r0[4]; if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; } s = r0[5]; if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; } s = r0[6]; if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; } s = r0[7]; if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } // choose pivot - or die if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2); if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1); // if (0.0 == r1[1]) return GL_FALSE; // eliminate second variable m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1]; r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2]; r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3]; s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; } s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; } s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; } s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } // choose pivot - or die if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2); // if (0.0 == r2[2]) return GL_FALSE; // eliminate third variable m3 = r3[2]/r2[2]; r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7]; // last check // if (0.0 == r3[3]) return GL_FALSE; s = 1.0f/r3[3]; // now back substitute row 3 r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; m2 = r2[3]; // now back substitute row 2 s = 1.0f/r2[2]; r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); m1 = r1[3]; r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; m0 = r0[3]; r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; m1 = r1[2]; // now back substitute row 1 s = 1.0f/r1[1]; r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); m0 = r0[2]; r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; m0 = r0[1]; // now back substitute row 0 s = 1.0f/r0[0]; r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); lcVector4 Row0(r0[4], r1[4], r2[4], r3[4]); lcVector4 Row1(r0[5], r1[5], r2[5], r3[5]); lcVector4 Row2(r0[6], r1[6], r2[6], r3[6]); lcVector4 Row3(r0[7], r1[7], r2[7], r3[7]); lcMatrix44 out(Row0, Row1, Row2, Row3); return out; #undef MAT #undef SWAP_ROWS } inline lcVector4 lcQuaternionRotationX(float Radians) { return lcVector4(sinf(Radians / 2.0f), 0, 0, cosf(Radians / 2.0f)); } inline lcVector4 lcQuaternionRotationY(float Radians) { return lcVector4(0, sinf(Radians / 2.0f), 0, cosf(Radians / 2.0f)); } inline lcVector4 lcQuaternionRotationZ(float Radians) { return lcVector4(0, 0, sinf(Radians / 2.0f), cosf(Radians / 2.0f)); } inline lcVector4 lcQuaternionFromAxisAngle(const lcVector4& a) { float s = sinf(a[3] / 2.0f); return lcVector4(a[0] * s, a[1] * s, a[2] * s, cosf(a[3] / 2.0f)); } inline lcVector4 lcQuaternionToAxisAngle(const lcVector4& a) { float Len = lcDot3(a, a); if (Len > 0.00001f) { float f = 1.0f / sqrtf(Len); return lcVector4(a[0] * f, a[1] * f, a[2] * f, acosf(a[3]) * 2.0f); } else { return lcVector4(0, 0, 1, 0); } } inline lcVector4 lcQuaternionMultiply(const lcVector4& a, const lcVector4& b) { float x = a[0] * b[3] + a[1] * b[2] - a[2] * b[1] + a[3] * b[0]; float y = -a[0] * b[2] + a[1] * b[3] + a[2] * b[0] + a[3] * b[1]; float z = a[0] * b[1] - a[1] * b[0] + a[2] * b[3] + a[3] * b[2]; float w = -a[0] * b[0] - a[1] * b[1] - a[2] * b[2] + a[3] * b[3]; return lcVector4(x, y, z, w); } inline lcVector3 lcQuaternionMul(const lcVector3& a, const lcVector4& b) { // Faster to transform to a matrix and multiply. float Tx = 2.0f*b[0]; float Ty = 2.0f*b[1]; float Tz = 2.0f*b[2]; float Twx = Tx*b[3]; float Twy = Ty*b[3]; float Twz = Tz*b[3]; float Txx = Tx*b[0]; float Txy = Ty*b[0]; float Txz = Tz*b[0]; float Tyy = Ty*b[1]; float Tyz = Tz*b[1]; float Tzz = Tz*b[2]; lcVector3 Rows[3]; Rows[0] = lcVector3(1.0f-(Tyy+Tzz), Txy+Twz, Txz-Twy); Rows[1] = lcVector3(Txy-Twz, 1.0f-(Txx+Tzz), Tyz+Twx); Rows[2] = lcVector3(Txz+Twy, Tyz-Twx, 1.0f-(Txx+Tyy)); return lcVector3(Rows[0]*a[0] + Rows[1]*a[1] + Rows[2]*a[2]); } // Convert world coordinates to screen coordinates. inline lcVector3 lcProjectPoint(const lcVector3& Point, const lcMatrix44& ModelView, const lcMatrix44& Projection, const int Viewport[4]) { lcVector4 Tmp; Tmp = lcMul4(lcVector4(Point[0], Point[1], Point[2], 1.0f), ModelView); Tmp = lcMul4(Tmp, Projection); // Normalize. Tmp /= Tmp[3]; // Screen coordinates. return lcVector3(Viewport[0] + (1 + Tmp[0]) * Viewport[2] / 2, Viewport[1] + (1 + Tmp[1]) * Viewport[3] / 2, (1 + Tmp[2]) / 2); } inline lcVector3 lcUnprojectPoint(const lcVector3& Point, const lcMatrix44& ModelView, const lcMatrix44& Projection, const int Viewport[4]) { // Calculate the screen to model transform. lcMatrix44 Transform = lcMatrix44Inverse(lcMul(ModelView, Projection)); lcVector4 Tmp; // Convert the point to homogeneous coordinates. Tmp[0] = (Point[0] - Viewport[0]) * 2.0f / Viewport[2] - 1.0f; Tmp[1] = (Point[1] - Viewport[1]) * 2.0f / Viewport[3] - 1.0f; Tmp[2] = Point[2] * 2.0f - 1.0f; Tmp[3] = 1.0f; Tmp = lcMul4(Tmp, Transform); if (Tmp[3] != 0.0f) Tmp /= Tmp[3]; return lcVector3(Tmp[0], Tmp[1], Tmp[2]); } inline void lcUnprojectPoints(lcVector3* Points, int NumPoints, const lcMatrix44& ModelView, const lcMatrix44& Projection, const int Viewport[4]) { // Calculate the screen to model transform. lcMatrix44 Transform = lcMatrix44Inverse(lcMul(ModelView, Projection)); for (int i = 0; i < NumPoints; i++) { lcVector4 Tmp; // Convert the point to homogeneous coordinates. Tmp[0] = (Points[i][0] - Viewport[0]) * 2.0f / Viewport[2] - 1.0f; Tmp[1] = (Points[i][1] - Viewport[1]) * 2.0f / Viewport[3] - 1.0f; Tmp[2] = Points[i][2] * 2.0f - 1.0f; Tmp[3] = 1.0f; Tmp = lcMul4(Tmp, Transform); if (Tmp[3] != 0.0f) Tmp /= Tmp[3]; Points[i] = lcVector3(Tmp[0], Tmp[1], Tmp[2]); } } inline void lcGetFrustumPlanes(const lcMatrix44& WorldView, const lcMatrix44& Projection, lcVector4 Planes[6]) { lcMatrix44 WorldProj = lcMul(WorldView, Projection); Planes[0][0] = (WorldProj[0][0] - WorldProj[0][3]) * -1; Planes[0][1] = (WorldProj[1][0] - WorldProj[1][3]) * -1; Planes[0][2] = (WorldProj[2][0] - WorldProj[2][3]) * -1; Planes[0][3] = (WorldProj[3][0] - WorldProj[3][3]) * -1; Planes[1][0] = WorldProj[0][0] + WorldProj[0][3]; Planes[1][1] = WorldProj[1][0] + WorldProj[1][3]; Planes[1][2] = WorldProj[2][0] + WorldProj[2][3]; Planes[1][3] = WorldProj[3][0] + WorldProj[3][3]; Planes[2][0] = (WorldProj[0][1] - WorldProj[0][3]) * -1; Planes[2][1] = (WorldProj[1][1] - WorldProj[1][3]) * -1; Planes[2][2] = (WorldProj[2][1] - WorldProj[2][3]) * -1; Planes[2][3] = (WorldProj[3][1] - WorldProj[3][3]) * -1; Planes[3][0] = WorldProj[0][1] + WorldProj[0][3]; Planes[3][1] = WorldProj[1][1] + WorldProj[1][3]; Planes[3][2] = WorldProj[2][1] + WorldProj[2][3]; Planes[3][3] = WorldProj[3][1] + WorldProj[3][3]; Planes[4][0] = (WorldProj[0][2] - WorldProj[0][3]) * -1; Planes[4][1] = (WorldProj[1][2] - WorldProj[1][3]) * -1; Planes[4][2] = (WorldProj[2][2] - WorldProj[2][3]) * -1; Planes[4][3] = (WorldProj[3][2] - WorldProj[3][3]) * -1; Planes[5][0] = WorldProj[0][2] + WorldProj[0][3]; Planes[5][1] = WorldProj[1][2] + WorldProj[1][3]; Planes[5][2] = WorldProj[2][2] + WorldProj[2][3]; Planes[5][3] = WorldProj[3][2] + WorldProj[3][3]; for (int i = 0; i < 6; i++) { lcVector3 Normal(Planes[i][0], Planes[i][1], Planes[i][2]); float Length = Normal.Length(); Planes[i] /= -Length; } } inline lcVector3 lcZoomExtents(const lcVector3& Position, const lcMatrix44& WorldView, const lcMatrix44& Projection, const lcVector3* Points, int NumPoints) { if (!NumPoints) return Position; lcVector4 Planes[6]; lcGetFrustumPlanes(WorldView, Projection, Planes); lcVector3 Front(WorldView[0][2], WorldView[1][2], WorldView[2][2]); // Calculate the position that is as close as possible to the model and has all pieces visible. float SmallestDistance = FLT_MAX; for (int p = 0; p < 4; p++) { lcVector3 Plane(Planes[p][0], Planes[p][1], Planes[p][2]); float ep = lcDot(Position, Plane); float fp = lcDot(Front, Plane); for (int j = 0; j < NumPoints; j++) { // Intersect the camera line with the plane that contains this point, NewEye = Eye + u * (Target - Eye) float u = (ep - lcDot(Points[j], Plane)) / fp; if (u < SmallestDistance) SmallestDistance = u; } } return Position - (Front * SmallestDistance); } // Calculate the intersection of a line segment and a plane and returns false // if they are parallel or the intersection is outside the line segment. inline bool lcLinePlaneIntersection(lcVector3* Intersection, const lcVector3& Start, const lcVector3& End, const lcVector4& Plane) { lcVector3 Dir = End - Start; lcVector3 PlaneNormal(Plane[0], Plane[1], Plane[2]); float t1 = lcDot(PlaneNormal, Start) + Plane[3]; float t2 = lcDot(PlaneNormal, Dir); if (t2 == 0.0f) return false; float t = -t1 / t2; *Intersection = Start + t * Dir; if ((t < 0.0f) || (t > 1.0f)) return false; return true; } inline bool lcLineTriangleMinIntersection(const lcVector3& p1, const lcVector3& p2, const lcVector3& p3, const lcVector3& Start, const lcVector3& End, float* MinDist, lcVector3* Intersection) { // Calculate the polygon plane. lcVector3 PlaneNormal = lcCross(p1 - p2, p3 - p2); float PlaneD = -lcDot(PlaneNormal, p1); // Check if the line is parallel to the plane. lcVector3 Dir = End - Start; float t1 = lcDot(PlaneNormal, Start) + PlaneD; float t2 = lcDot(PlaneNormal, Dir); if (t2 == 0) return false; float t = -(t1 / t2); if (t < 0) return false; // Intersection of the plane and line segment. *Intersection = Start - (t1 / t2) * Dir; float Dist = lcLength(Start - *Intersection); if (Dist > *MinDist) return false; // Check if we're inside the triangle. lcVector3 pa1, pa2, pa3; pa1 = lcNormalize(p1 - *Intersection); pa2 = lcNormalize(p2 - *Intersection); pa3 = lcNormalize(p3 - *Intersection); float a1, a2, a3; a1 = lcDot(pa1, pa2); a2 = lcDot(pa2, pa3); a3 = lcDot(pa3, pa1); float total = (acosf(a1) + acosf(a2) + acosf(a3)) * LC_RTOD; if (fabs(total - 360) <= 0.001f) { *MinDist = Dist; return true; } return false; } // Sutherland-Hodgman method of clipping a polygon to a plane. inline void lcPolygonPlaneClip(lcVector3* InPoints, int NumInPoints, lcVector3* OutPoints, int* NumOutPoints, const lcVector4& Plane) { lcVector3 *s, *p, i; *NumOutPoints = 0; s = &InPoints[NumInPoints-1]; for (int j = 0; j < NumInPoints; j++) { p = &InPoints[j]; if (lcDot3(*p, Plane) + Plane[3] <= 0) { if (lcDot3(*s, Plane) + Plane[3] <= 0) { // Both points inside. OutPoints[*NumOutPoints] = *p; *NumOutPoints = *NumOutPoints + 1; } else { // Outside, inside. lcLinePlaneIntersection(&i, *s, *p, Plane); OutPoints[*NumOutPoints] = i; *NumOutPoints = *NumOutPoints + 1; OutPoints[*NumOutPoints] = *p; *NumOutPoints = *NumOutPoints + 1; } } else { if (lcDot3(*s, Plane) + Plane[3] <= 0) { // Inside, outside. lcLinePlaneIntersection(&i, *s, *p, Plane); OutPoints[*NumOutPoints] = i; *NumOutPoints = *NumOutPoints + 1; } } s = p; } } // Return true if a polygon intersects a set of planes. inline bool lcTriangleIntersectsPlanes(float* p1, float* p2, float* p3, const lcVector4 Planes[6]) { const int NumPlanes = 6; float* Points[3] = { p1, p2, p3 }; int Outcodes[3] = { 0, 0, 0 }, i; int NumPoints = 3; // First do the Cohen-Sutherland out code test for trivial rejects/accepts. for (i = 0; i < NumPoints; i++) { lcVector3 Pt(Points[i][0], Points[i][1], Points[i][2]); for (int j = 0; j < NumPlanes; j++) { if (lcDot3(Pt, Planes[j]) + Planes[j][3] > 0) Outcodes[i] |= 1 << j; } } // Polygon completely outside a plane. if ((Outcodes[0] & Outcodes[1] & Outcodes[2]) != 0) return false; // If any vertex has an out code of all zeros then we intersect the volume. if (!Outcodes[0] || !Outcodes[1] || !Outcodes[2]) return true; // Buffers for clipping the polygon. lcVector3 ClipPoints[2][8]; int NumClipPoints[2]; int ClipBuffer = 0; NumClipPoints[0] = NumPoints; ClipPoints[0][0] = lcVector3(p1[0], p1[1], p1[2]); ClipPoints[0][1] = lcVector3(p2[0], p2[1], p2[2]); ClipPoints[0][2] = lcVector3(p3[0], p3[1], p3[2]); // Now clip the polygon against the planes. for (i = 0; i < NumPlanes; i++) { lcPolygonPlaneClip(ClipPoints[ClipBuffer], NumClipPoints[ClipBuffer], ClipPoints[ClipBuffer^1], &NumClipPoints[ClipBuffer^1], Planes[i]); ClipBuffer ^= 1; if (!NumClipPoints[ClipBuffer]) return false; } return true; } // Return true if a ray intersects a bounding box, and calculates the distance from the start of the ray (adapted from Graphics Gems). inline bool lcBoundingBoxRayMinIntersectDistance(const lcVector3& Min, const lcVector3& Max, const lcVector3& Start, const lcVector3& End, float* Dist, lcVector3* Intersection) { bool MiddleQuadrant[3]; bool Inside = true; float CandidatePlane[3]; float MaxT[3]; int i; // Find candidate planes. for (i = 0; i < 3; i++) { if (Start[i] < Min[i]) { MiddleQuadrant[i] = false; CandidatePlane[i] = Min[i]; Inside = false; } else if (Start[i] > Max[i]) { MiddleQuadrant[i] = false; CandidatePlane[i] = Max[i]; Inside = false; } else { MiddleQuadrant[i] = true; } } // Ray origin inside box. if (Inside) { *Dist = 0; if (*Intersection) *Intersection = Start; return true; } // Calculate T distances to candidate planes. lcVector3 Dir = End - Start; for (i = 0; i < 3; i++) { if (!MiddleQuadrant[i] && Dir[i] != 0.0f) MaxT[i] = (CandidatePlane[i] - Start[i]) / Dir[i]; else MaxT[i] = -1.0f; } // Get largest of the MaxT's for final choice of intersection. int WhichPlane = 0; for (i = 1; i < 3; i++) if (MaxT[WhichPlane] < MaxT[i]) WhichPlane = i; // Check final candidate actually inside box. if (MaxT[WhichPlane] < 0.0f) return false; lcVector3 Point; for (i = 0; i < 3; i++) { if (WhichPlane != i) { Point[i] = Start[i] + MaxT[WhichPlane] * Dir[i]; if (Point[i] < Min[i] || Point[i] > Max[i]) return false; } else Point[i] = CandidatePlane[i]; } *Dist = lcLength(Point - Start); if (*Intersection) *Intersection = Point; return true; } inline bool lcSphereRayMinIntersectDistance(const lcVector3& Center, float Radius, const lcVector3& Start, const lcVector3& End, float* Dist) { lcVector3 Dir = Center - Start; float LengthSquaredDir = lcLengthSquared(Dir); float RadiusSquared = Radius * Radius; if (LengthSquaredDir < RadiusSquared) { // Ray origin inside sphere. *Dist = 0; return true; } else { lcVector3 RayDir = End - Start; float t = lcDot(Dir, RayDir) / lcLengthSquared(RayDir); // Ray points away from sphere. if (t < 0) return false; float c = (RadiusSquared - LengthSquaredDir) / lcLengthSquared(RayDir) + (t * t); if (c > 0) { *Dist = t - sqrtf(c); return true; } return false; } } /* float LinePointMinDistance(const Vector3& Point, const Vector3& Start, const Vector3& End) { Vector3 Dir = End - Start; float t1 = Dot3(Start - Point, Dir); float t2 = LengthSquared(Dir); float t = -t1 / t2; if (t < 0.0f) t = 0.0f; else if (t > 1.0f) t = 1.0f; Vector3 Closest = Start + t * Dir; return Length(Closest - Point); } */ // Returns true if the axis aligned box intersects the volume defined by planes. inline bool lcBoundingBoxIntersectsVolume(const lcVector3& Min, const lcVector3& Max, const lcVector4 Planes[6]) { const int NumPlanes = 6; lcVector3 Points[8] = { Points[0] = lcVector3(Min[0], Min[1], Min[2]), Points[1] = lcVector3(Min[0], Max[1], Min[2]), Points[2] = lcVector3(Max[0], Max[1], Min[2]), Points[3] = lcVector3(Max[0], Min[1], Min[2]), Points[4] = lcVector3(Min[0], Min[1], Max[2]), Points[5] = lcVector3(Min[0], Max[1], Max[2]), Points[6] = lcVector3(Max[0], Max[1], Max[2]), Points[7] = lcVector3(Max[0], Min[1], Max[2]) }; // Start by testing trivial reject/accept cases. int Outcodes[8]; int i; for (i = 0; i < 8; i++) { Outcodes[i] = 0; for (int j = 0; j < NumPlanes; j++) { if (lcDot3(Points[i], Planes[j]) + Planes[j][3] > 0) Outcodes[i] |= 1 << j; } } int OutcodesOR = 0, OutcodesAND = 0x3f; for (i = 0; i < 8; i++) { OutcodesAND &= Outcodes[i]; OutcodesOR |= Outcodes[i]; } // All corners outside the same plane. if (OutcodesAND != 0) return false; // All corners inside the volume. if (OutcodesOR == 0) return true; int Indices[36] = { 0, 1, 2, 0, 2, 3, 7, 6, 5, 7, 5, 4, 0, 1, 5, 0, 5, 4, 2, 3, 7, 2, 7, 6, 0, 3, 7, 0, 7, 4, 1, 2, 6, 1, 6, 5 }; for (int Idx = 0; Idx < 36; Idx += 3) if (lcTriangleIntersectsPlanes(Points[Indices[Idx]*3], Points[Indices[Idx+1]*3], Points[Indices[Idx+2]*3], Planes)) return true; return false; } /* bool SphereIntersectsVolume(const Vector3& Center, float Radius, const Vector4* Planes, int NumPlanes) { for (int j = 0; j < NumPlanes; j++) if (Dot3(Center, Planes[j]) + Planes[j][3] > Radius) return false; return true; }*/ #endif // _LC_MATH_H_