#include "lc_global.h" #include "lc_meshloader.h" #include "lc_file.h" #include "lc_colors.h" #include "lc_library.h" #include "lc_application.h" #include "lc_texture.h" static lcVector2 lcCalculateTexCoord(const lcVector3& Position, const lcMeshLoaderTextureMap* TextureMap) { switch (TextureMap->Type) { case lcMeshLoaderTextureMapType::Planar: return lcVector2(lcDot3(Position, TextureMap->Params.Planar.Planes[0]) + TextureMap->Params.Planar.Planes[0].w, lcDot3(Position, TextureMap->Params.Planar.Planes[1]) + TextureMap->Params.Planar.Planes[1].w); case lcMeshLoaderTextureMapType::Cylindrical: { const lcVector4& FrontPlane = TextureMap->Params.Cylindrical.FrontPlane; const lcVector4& Plane1 = TextureMap->Params.Cylindrical.Plane1; const lcVector4& Plane2 = TextureMap->Params.Cylindrical.Plane2; lcVector2 TexCoord; float DotPlane1 = lcDot(lcVector4(Position, 1.0f), Plane1); lcVector3 PointInPlane1 = Position - lcVector3(Plane1) * DotPlane1; float DotFrontPlane = lcDot(lcVector4(PointInPlane1, 1.0f), FrontPlane); float DotPlane2 = lcDot(lcVector4(PointInPlane1, 1.0f), Plane2); float Angle1 = atan2f(DotPlane2, DotFrontPlane) / LC_PI * TextureMap->Angle1; TexCoord.x = lcClamp(0.5f + 0.5f * Angle1, 0.0f, 1.0f); TexCoord.y = DotPlane1 / TextureMap->Params.Cylindrical.UpLength; return TexCoord; } case lcMeshLoaderTextureMapType::Spherical: { const lcVector4& FrontPlane = TextureMap->Params.Spherical.FrontPlane; const lcVector3& Center = TextureMap->Params.Spherical.Center; const lcVector4& Plane1 = TextureMap->Params.Spherical.Plane1; const lcVector4& Plane2 = TextureMap->Params.Spherical.Plane2; lcVector2 TexCoord; lcVector3 VertexDir = Position - Center; float DotPlane1 = lcDot(lcVector4(Position, 1.0f), Plane1); lcVector3 PointInPlane1 = Position - lcVector3(Plane1) * DotPlane1; float DotFrontPlane = lcDot(lcVector4(PointInPlane1, 1.0f), FrontPlane); float DotPlane2 = lcDot(lcVector4(PointInPlane1, 1.0f), Plane2); float Angle1 = atan2f(DotPlane2, DotFrontPlane) / LC_PI * TextureMap->Angle1; TexCoord.x = 0.5f + 0.5f * Angle1; float Angle2 = asinf(DotPlane1 / lcLength(VertexDir)) / LC_PI * TextureMap->Angle2; TexCoord.y = 0.5f - Angle2; return TexCoord; } } return lcVector2(0.0f, 0.0f); } static void lcResequenceQuad(int* Indices, int a, int b, int c, int d) { Indices[0] = a; Indices[1] = b; Indices[2] = c; Indices[3] = d; } static void lcTestQuad(int* QuadIndices, const lcVector3* Vertices) { lcVector3 v01 = Vertices[1] - Vertices[0]; lcVector3 v02 = Vertices[2] - Vertices[0]; lcVector3 v03 = Vertices[3] - Vertices[0]; lcVector3 cp1 = lcCross(v01, v02); lcVector3 cp2 = lcCross(v02, v03); if (lcDot(cp1, cp2) > 0.0f) return; lcVector3 v12 = Vertices[2] - Vertices[1]; lcVector3 v13 = Vertices[3] - Vertices[1]; lcVector3 v23 = Vertices[3] - Vertices[2]; if (lcDot(lcCross(v12, v01), lcCross(v01, v13)) > 0.0f) { if (-lcDot(lcCross(v02, v12), lcCross(v12, v23)) > 0.0f) lcResequenceQuad(QuadIndices, 1, 2, 3, 0); else lcResequenceQuad(QuadIndices, 0, 3, 1, 2); } else { if (-lcDot(lcCross(v02, v12), lcCross(v12, v23)) > 0.0f) lcResequenceQuad(QuadIndices, 0, 1, 3, 2); else lcResequenceQuad(QuadIndices, 1, 2, 3, 0); } } const float lcDistanceEpsilon = 0.01f; // Maximum value for 50591.dat const float lcTexCoordEpsilon = 0.01f; static bool lcCompareVertices(const lcVector3& Position1, const lcVector3& Position2) { return fabsf(Position1.x - Position2.x) < lcDistanceEpsilon && fabsf(Position1.y - Position2.y) < lcDistanceEpsilon && fabsf(Position1.z - Position2.z) < lcDistanceEpsilon; } static bool lcCompareVertices(const lcVector3& Position1, const lcVector2& TexCoord1, const lcVector3& Position2, const lcVector2& TexCoord2) { return lcCompareVertices(Position1, Position2) && fabsf(TexCoord1.x - TexCoord2.x) < lcTexCoordEpsilon && fabsf(TexCoord1.y - TexCoord2.y) < lcTexCoordEpsilon; } lcLibraryMeshSection* lcMeshLoaderTypeData::AddSection(lcMeshPrimitiveType PrimitiveType, quint32 ColorCode, lcTexture* Texture) { for (std::unique_ptr& Section : mSections) if (Section->mColor == ColorCode && Section->mPrimitiveType == PrimitiveType && Section->mTexture == Texture) return Section.get(); mSections.emplace_back(new lcLibraryMeshSection(PrimitiveType, ColorCode, Texture)); return mSections.back().get(); } quint32 lcMeshLoaderTypeData::AddVertex(const lcVector3& Position, bool Optimize) { if (Optimize) { for (int VertexIdx = mVertices.GetSize() - 1; VertexIdx >= 0; VertexIdx--) { lcMeshLoaderVertex& Vertex = mVertices[VertexIdx]; if (lcCompareVertices(Position, Vertex.Position)) { Vertex.Usage |= LC_LIBRARY_VERTEX_UNTEXTURED; return VertexIdx; } } } lcMeshLoaderVertex& Vertex = mVertices.Add(); Vertex.Position = Position; Vertex.Normal = lcVector3(0.0f, 0.0f, 0.0f); Vertex.NormalWeight = 0.0f; Vertex.TexCoord = lcVector2(0.0f, 0.0f); Vertex.Usage = LC_LIBRARY_VERTEX_UNTEXTURED; return mVertices.GetSize() - 1; } quint32 lcMeshLoaderTypeData::AddVertex(const lcVector3& Position, const lcVector3& Normal, bool Optimize) { if (Optimize) { for (int VertexIdx = mVertices.GetSize() - 1; VertexIdx >= 0; VertexIdx--) { lcMeshLoaderVertex& Vertex = mVertices[VertexIdx]; if (lcCompareVertices(Position, Vertex.Position)) { if (Vertex.NormalWeight == 0.0f) { Vertex.Normal = Normal; Vertex.NormalWeight = 1.0f; Vertex.Usage |= LC_LIBRARY_VERTEX_UNTEXTURED; return VertexIdx; } else if (lcDot(Normal, Vertex.Normal) > 0.707f) { Vertex.Normal = lcNormalize(Vertex.Normal * Vertex.NormalWeight + Normal); Vertex.NormalWeight += 1.0f; Vertex.Usage |= LC_LIBRARY_VERTEX_UNTEXTURED; return VertexIdx; } } } } lcMeshLoaderVertex& Vertex = mVertices.Add(); Vertex.Position = Position; Vertex.Normal = Normal; Vertex.NormalWeight = 1.0f; Vertex.TexCoord = lcVector2(0.0f, 0.0f); Vertex.Usage = LC_LIBRARY_VERTEX_UNTEXTURED; return mVertices.GetSize() - 1; } quint32 lcMeshLoaderTypeData::AddTexturedVertex(const lcVector3& Position, const lcVector2& TexCoord, bool Optimize) { if (Optimize) { for (int VertexIdx = mVertices.GetSize() - 1; VertexIdx >= 0; VertexIdx--) { lcMeshLoaderVertex& Vertex = mVertices[VertexIdx]; if (Vertex.Usage & LC_LIBRARY_VERTEX_TEXTURED) { if (lcCompareVertices(Position, TexCoord, Vertex.Position, Vertex.TexCoord)) return VertexIdx; } else { if (lcCompareVertices(Position, Vertex.Position)) { Vertex.TexCoord = TexCoord; Vertex.Usage |= LC_LIBRARY_VERTEX_TEXTURED; return VertexIdx; } } } } lcMeshLoaderVertex& Vertex = mVertices.Add(); Vertex.Position = Position; Vertex.Normal = lcVector3(0.0f, 0.0f, 0.0f); Vertex.NormalWeight = 0.0f; Vertex.TexCoord = TexCoord; Vertex.Usage = LC_LIBRARY_VERTEX_TEXTURED; return mVertices.GetSize() - 1; } quint32 lcMeshLoaderTypeData::AddTexturedVertex(const lcVector3& Position, const lcVector3& Normal, const lcVector2& TexCoord, bool Optimize) { if (Optimize) { for (int VertexIdx = mVertices.GetSize() - 1; VertexIdx >= 0; VertexIdx--) { lcMeshLoaderVertex& Vertex = mVertices[VertexIdx]; if (Vertex.Usage & LC_LIBRARY_VERTEX_TEXTURED) { if (lcCompareVertices(Position, TexCoord, Vertex.Position, Vertex.TexCoord)) { if (Vertex.NormalWeight == 0.0f) { Vertex.Normal = Normal; Vertex.NormalWeight = 1.0f; return VertexIdx; } else if (lcDot(Normal, Vertex.Normal) > 0.707f) { Vertex.Normal = lcNormalize(Vertex.Normal * Vertex.NormalWeight + Normal); Vertex.NormalWeight += 1.0f; return VertexIdx; } } } else { if (lcCompareVertices(Position, Vertex.Position)) { if (Vertex.NormalWeight == 0.0f) { Vertex.Normal = Normal; Vertex.NormalWeight = 1.0f; Vertex.TexCoord = TexCoord; Vertex.Usage |= LC_LIBRARY_VERTEX_TEXTURED; return VertexIdx; } else if (lcDot(Normal, Vertex.Normal) > 0.707f) { Vertex.Normal = lcNormalize(Vertex.Normal * Vertex.NormalWeight + Normal); Vertex.NormalWeight += 1.0f; Vertex.TexCoord = TexCoord; Vertex.Usage |= LC_LIBRARY_VERTEX_TEXTURED; return VertexIdx; } } } } } lcMeshLoaderVertex& Vertex = mVertices.Add(); Vertex.Position = Position; Vertex.Normal = Normal; Vertex.NormalWeight = 1.0f; Vertex.TexCoord = TexCoord; Vertex.Usage = LC_LIBRARY_VERTEX_TEXTURED; return mVertices.GetSize() - 1; } quint32 lcMeshLoaderTypeData::AddConditionalVertex(const lcVector3(&Position)[4]) { lcMeshLoaderConditionalVertex& Vertex = mConditionalVertices.Add(); Vertex.Position[0] = Position[0]; Vertex.Position[1] = Position[1]; Vertex.Position[2] = Position[2]; Vertex.Position[3] = Position[3]; return mConditionalVertices.GetSize() - 1; } void lcMeshLoaderTypeData::ProcessLine(int LineType, quint32 ColorCode, bool WindingCCW, lcVector3 (&Vertices)[4], bool Optimize) { lcMeshPrimitiveType PrimitiveTypes[4] = { LC_MESH_LINES, LC_MESH_TRIANGLES, LC_MESH_TRIANGLES, LC_MESH_CONDITIONAL_LINES }; lcMeshPrimitiveType PrimitiveType = PrimitiveTypes[LineType - 2]; lcLibraryMeshSection* Section = AddSection(PrimitiveType, ColorCode, nullptr); int QuadIndices[4] = { 0, 1, 2, 3 }; int Indices[4] = { -1, -1, -1, -1 }; if (LineType == 3 || LineType == 4) { if (LineType == 4) lcTestQuad(QuadIndices, Vertices); lcVector3 Normal = lcNormalize(lcCross(Vertices[1] - Vertices[0], Vertices[2] - Vertices[0])); if (!WindingCCW) Normal = -Normal; for (int IndexIdx = 0; IndexIdx < lcMin(LineType, 4); IndexIdx++) { const lcVector3& Position = Vertices[QuadIndices[IndexIdx]]; Indices[IndexIdx] = AddVertex(Position, Normal, Optimize); } } else if (LineType == 2) { for (int IndexIdx = 0; IndexIdx < 2; IndexIdx++) { const lcVector3& Position = Vertices[QuadIndices[IndexIdx]]; Indices[IndexIdx] = AddVertex(Position, Optimize); } } else if (LineType == 5) { Indices[0] = AddConditionalVertex(Vertices); std::swap(Vertices[0], Vertices[1]); Indices[1] = AddConditionalVertex(Vertices); } switch (LineType) { case 5: if (Indices[0] != Indices[1]) { Section->mIndices.Add(Indices[0]); Section->mIndices.Add(Indices[1]); } break; case 4: if (Indices[0] != Indices[2] && Indices[0] != Indices[3] && Indices[2] != Indices[3]) { if (WindingCCW) { Section->mIndices.Add(Indices[2]); Section->mIndices.Add(Indices[3]); Section->mIndices.Add(Indices[0]); } else { Section->mIndices.Add(Indices[0]); Section->mIndices.Add(Indices[3]); Section->mIndices.Add(Indices[2]); } } Q_FALLTHROUGH(); case 3: if (Indices[0] != Indices[1] && Indices[0] != Indices[2] && Indices[1] != Indices[2]) { if (WindingCCW) { Section->mIndices.Add(Indices[0]); Section->mIndices.Add(Indices[1]); Section->mIndices.Add(Indices[2]); } else { Section->mIndices.Add(Indices[2]); Section->mIndices.Add(Indices[1]); Section->mIndices.Add(Indices[0]); } } break; case 2: if (Indices[0] != Indices[1]) { Section->mIndices.Add(Indices[0]); Section->mIndices.Add(Indices[1]); } break; } } void lcMeshLoaderTypeData::ProcessTexturedLine(int LineType, quint32 ColorCode, bool WindingCCW, const lcMeshLoaderTextureMap& TextureMap, const lcVector3* Vertices, bool Optimize) { lcMeshPrimitiveType PrimitiveType = LC_MESH_TEXTURED_TRIANGLES; lcLibraryMeshSection* Section = AddSection(PrimitiveType, ColorCode, TextureMap.Texture); int QuadIndices[4] = { 0, 1, 2, 3 }; int Indices[4] = { -1, -1, -1, -1 }; if (LineType == 4) lcTestQuad(QuadIndices, Vertices); lcVector3 Normal = lcNormalize(lcCross(Vertices[1] - Vertices[0], Vertices[2] - Vertices[0])); if (!WindingCCW) Normal = -Normal; lcVector2 TexCoords[4]; for (int IndexIdx = 0; IndexIdx < lcMin(LineType, 4); IndexIdx++) { const lcVector3& Position = Vertices[QuadIndices[IndexIdx]]; TexCoords[QuadIndices[IndexIdx]] = lcCalculateTexCoord(Position, &TextureMap); } if (TextureMap.Type == lcMeshLoaderTextureMapType::Cylindrical || TextureMap.Type == lcMeshLoaderTextureMapType::Spherical) { auto CheckTexCoordsWrap = [&TexCoords, &Vertices, &TextureMap](int Index1, int Index2, int Index3) { float u12 = fabsf(TexCoords[Index1].x - TexCoords[Index2].x); float u13 = fabsf(TexCoords[Index1].x - TexCoords[Index3].x); float u23 = fabsf(TexCoords[Index2].x - TexCoords[Index3].x); if (u12 < 0.5f && u13 < 0.5f && u23 < 0.5f) return; const lcVector4& Plane2 = (TextureMap.Type == lcMeshLoaderTextureMapType::Cylindrical) ? TextureMap.Params.Cylindrical.Plane2 : TextureMap.Params.Spherical.Plane2; float Dot1 = fabsf(lcDot(Plane2, lcVector4(Vertices[Index1], 1.0f))); float Dot2 = fabsf(lcDot(Plane2, lcVector4(Vertices[Index2], 1.0f))); float Dot3 = fabsf(lcDot(Plane2, lcVector4(Vertices[Index3], 1.0f))); if (Dot1 > Dot2) { if (Dot1 > Dot3) { if (u12 > 0.5f) TexCoords[Index2].x += TexCoords[Index2].x < 0.5f ? 1.0f : -1.0f; if (u13 > 0.5f) TexCoords[Index3].x += TexCoords[Index3].x < 0.5f ? 1.0f : -1.0f; } else { if (u13 > 0.5f) TexCoords[Index1].x += TexCoords[Index1].x < 0.5f ? 1.0f : -1.0f; if (u23 > 0.5f) TexCoords[Index2].x += TexCoords[Index2].x < 0.5f ? 1.0f : -1.0f; } } else { if (Dot2 > Dot3) { if (u12 > 0.5f) TexCoords[Index1].x += TexCoords[Index1].x < 0.5f ? 1.0f : -1.0f; if (u23 > 0.5f) TexCoords[Index3].x += TexCoords[Index3].x < 0.5f ? 1.0f : -1.0f; } else { if (u13 > 0.5f) TexCoords[Index1].x += TexCoords[Index1].x < 0.5f ? 1.0f : -1.0f; if (u23 > 0.5f) TexCoords[Index2].x += TexCoords[Index2].x < 0.5f ? 1.0f : -1.0f; } } }; CheckTexCoordsWrap(QuadIndices[0], QuadIndices[1], QuadIndices[2]); if (LineType == 4) CheckTexCoordsWrap(QuadIndices[2], QuadIndices[3], QuadIndices[0]); } if (TextureMap.Type == lcMeshLoaderTextureMapType::Spherical) { auto CheckTexCoordsPole = [&TexCoords, &Vertices, &TextureMap](int Index1, int Index2, int Index3) { const lcVector4& FrontPlane = TextureMap.Params.Spherical.FrontPlane; const lcVector4& Plane2 = TextureMap.Params.Spherical.Plane2; int PoleIndex; int EdgeIndex1, EdgeIndex2; if (fabsf(lcDot(lcVector4(Vertices[Index1], 1.0f), FrontPlane)) < 0.01f && fabsf(lcDot(lcVector4(Vertices[Index1], 1.0f), Plane2)) < 0.01f) { PoleIndex = Index1; EdgeIndex1 = Index2; EdgeIndex2 = Index3; } else if (fabsf(lcDot(lcVector4(Vertices[Index2], 1.0f), FrontPlane)) < 0.01f && fabsf(lcDot(lcVector4(Vertices[Index2], 1.0f), Plane2)) < 0.01f) { PoleIndex = Index2; EdgeIndex1 = Index1; EdgeIndex2 = Index3; } else if (fabsf(lcDot(lcVector4(Vertices[Index3], 1.0f), FrontPlane)) < 0.01f && fabsf(lcDot(lcVector4(Vertices[Index3], 1.0f), Plane2)) < 0.01f) { PoleIndex = Index3; EdgeIndex1 = Index1; EdgeIndex2 = Index2; } else return; lcVector3 OppositeEdge = Vertices[EdgeIndex2] - Vertices[EdgeIndex1]; lcVector3 SideEdge = Vertices[PoleIndex] - Vertices[EdgeIndex1]; float OppositeLength = lcLength(OppositeEdge); float Projection = lcDot(OppositeEdge, SideEdge) / (OppositeLength * OppositeLength); TexCoords[PoleIndex].x = TexCoords[EdgeIndex1].x + (TexCoords[EdgeIndex2].x - TexCoords[EdgeIndex1].x) * Projection; }; CheckTexCoordsPole(QuadIndices[0], QuadIndices[1], QuadIndices[2]); if (LineType == 4) CheckTexCoordsPole(QuadIndices[2], QuadIndices[3], QuadIndices[0]); } for (int IndexIdx = 0; IndexIdx < lcMin(LineType, 4); IndexIdx++) { const lcVector3& Position = Vertices[QuadIndices[IndexIdx]]; Indices[IndexIdx] = AddTexturedVertex(Position, Normal, TexCoords[QuadIndices[IndexIdx]], Optimize); } if (LineType == 4) { if (Indices[0] != Indices[2] && Indices[0] != Indices[3] && Indices[2] != Indices[3]) { if (WindingCCW) { Section->mIndices.Add(Indices[2]); Section->mIndices.Add(Indices[3]); Section->mIndices.Add(Indices[0]); } else { Section->mIndices.Add(Indices[0]); Section->mIndices.Add(Indices[3]); Section->mIndices.Add(Indices[2]); } } } if (Indices[0] != Indices[1] && Indices[0] != Indices[2] && Indices[1] != Indices[2]) { if (WindingCCW) { Section->mIndices.Add(Indices[0]); Section->mIndices.Add(Indices[1]); Section->mIndices.Add(Indices[2]); } else { Section->mIndices.Add(Indices[2]); Section->mIndices.Add(Indices[1]); Section->mIndices.Add(Indices[0]); } } } void lcMeshLoaderTypeData::AddMeshData(const lcMeshLoaderTypeData& Data, const lcMatrix44& Transform, quint32 CurrentColorCode, bool InvertWinding, bool InvertNormals, lcMeshLoaderTextureMap* TextureMap) { const lcArray& DataVertices = Data.mVertices; lcArray IndexRemap(DataVertices.GetSize()); const lcMatrix33 NormalTransform = lcMatrix33Transpose(lcMatrix33(lcMatrix44Inverse(Transform))); if (!TextureMap) { mVertices.AllocGrow(DataVertices.GetSize()); for (const lcMeshLoaderVertex& DataVertex : DataVertices) { lcVector3 Position = lcMul31(DataVertex.Position, Transform); int Index; if ((DataVertex.Usage & LC_LIBRARY_VERTEX_TEXTURED) == 0) { if (DataVertex.NormalWeight == 0.0f) Index = AddVertex(Position, true); else { lcVector3 Normal = lcNormalize(lcMul(DataVertex.Normal, NormalTransform)); if (InvertNormals) Normal = -Normal; Index = AddVertex(Position, Normal, true); } } else { if (DataVertex.NormalWeight == 0.0f) Index = AddTexturedVertex(Position, DataVertex.TexCoord, true); else { lcVector3 Normal = lcNormalize(lcMul(DataVertex.Normal, NormalTransform)); if (InvertNormals) Normal = -Normal; Index = AddTexturedVertex(Position, Normal, DataVertex.TexCoord, true); } mVertices[Index].Usage = DataVertex.Usage; // todo: I think this should be |= } IndexRemap.Add(Index); } } else { for (const lcMeshLoaderVertex& DataVertex : DataVertices) { lcVector3 Position = lcMul31(DataVertex.Position, Transform); lcVector2 TexCoord = lcCalculateTexCoord(Position, TextureMap); int Index; if (DataVertex.NormalWeight == 0.0f) Index = AddTexturedVertex(Position, TexCoord, true); else { lcVector3 Normal = lcNormalize(lcMul(DataVertex.Normal, NormalTransform)); if (InvertNormals) Normal = -Normal; Index = AddTexturedVertex(Position, Normal, TexCoord, true); } IndexRemap.Add(Index); } } mConditionalVertices.AllocGrow(Data.mConditionalVertices.GetSize()); lcArray ConditionalRemap(Data.mConditionalVertices.GetSize()); for (const lcMeshLoaderConditionalVertex& DataVertex : Data.mConditionalVertices) { lcVector3 Position[4]; Position[0] = lcMul31(DataVertex.Position[0], Transform); Position[1] = lcMul31(DataVertex.Position[1], Transform); Position[2] = lcMul31(DataVertex.Position[2], Transform); Position[3] = lcMul31(DataVertex.Position[3], Transform); int Index = AddConditionalVertex(Position); ConditionalRemap.Add(Index); } for (const std::unique_ptr& SrcSection : Data.mSections) { quint32 ColorCode = SrcSection->mColor == 16 ? CurrentColorCode : SrcSection->mColor; lcTexture* Texture; lcMeshPrimitiveType PrimitiveType = SrcSection->mPrimitiveType; if (SrcSection->mTexture) Texture = SrcSection->mTexture; else if (TextureMap && SrcSection->mPrimitiveType == LC_MESH_TRIANGLES) { Texture = TextureMap->Texture; PrimitiveType = LC_MESH_TEXTURED_TRIANGLES; } else Texture = nullptr; lcLibraryMeshSection* DstSection = AddSection(PrimitiveType, ColorCode, Texture); DstSection->mIndices.AllocGrow(SrcSection->mIndices.GetSize()); if (PrimitiveType == LC_MESH_CONDITIONAL_LINES) { for (quint32 Index : SrcSection->mIndices) DstSection->mIndices.Add(ConditionalRemap[Index]); } else if (!InvertWinding || (PrimitiveType == LC_MESH_LINES)) { for (quint32 Index : SrcSection->mIndices) DstSection->mIndices.Add(IndexRemap[Index]); } else { for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx += 3) { DstSection->mIndices.Add(IndexRemap[SrcSection->mIndices[IndexIdx + 2]]); DstSection->mIndices.Add(IndexRemap[SrcSection->mIndices[IndexIdx + 1]]); DstSection->mIndices.Add(IndexRemap[SrcSection->mIndices[IndexIdx + 0]]); } } } } void lcMeshLoaderTypeData::AddMeshDataNoDuplicateCheck(const lcMeshLoaderTypeData& Data, const lcMatrix44& Transform, quint32 CurrentColorCode, bool InvertWinding, bool InvertNormals, lcMeshLoaderTextureMap* TextureMap) { const lcArray& DataVertices = Data.mVertices; quint32 BaseIndex; const lcMatrix33 NormalTransform = lcMatrix33Transpose(lcMatrix33(lcMatrix44Inverse(Transform))); if (!TextureMap) { BaseIndex = mVertices.GetSize(); mVertices.SetGrow(lcMin(mVertices.GetSize(), 8 * 1024 * 1024)); mVertices.AllocGrow(DataVertices.GetSize()); for (int SrcVertexIdx = 0; SrcVertexIdx < DataVertices.GetSize(); SrcVertexIdx++) { const lcMeshLoaderVertex& SrcVertex = DataVertices[SrcVertexIdx]; lcMeshLoaderVertex& DstVertex = mVertices.Add(); DstVertex.Position = lcMul31(SrcVertex.Position, Transform); DstVertex.Normal = lcNormalize(lcMul(SrcVertex.Normal, NormalTransform)); if (InvertNormals) DstVertex.Normal = -DstVertex.Normal; DstVertex.NormalWeight = SrcVertex.NormalWeight; DstVertex.TexCoord = SrcVertex.TexCoord; DstVertex.Usage = SrcVertex.Usage; } } else { BaseIndex = mVertices.GetSize(); mVertices.AllocGrow(DataVertices.GetSize()); for (int SrcVertexIdx = 0; SrcVertexIdx < DataVertices.GetSize(); SrcVertexIdx++) { const lcMeshLoaderVertex& SrcVertex = DataVertices[SrcVertexIdx]; lcMeshLoaderVertex& DstVertex = mVertices.Add(); lcVector3 Position = lcMul31(SrcVertex.Position, Transform); lcVector2 TexCoord = lcCalculateTexCoord(Position, TextureMap); DstVertex.Position = Position; DstVertex.Normal = lcNormalize(lcMul(SrcVertex.Normal, NormalTransform)); if (InvertNormals) DstVertex.Normal = -DstVertex.Normal; DstVertex.NormalWeight = SrcVertex.NormalWeight; DstVertex.TexCoord = TexCoord; DstVertex.Usage = LC_LIBRARY_VERTEX_TEXTURED; } } mConditionalVertices.AllocGrow(Data.mConditionalVertices.GetSize()); quint32 BaseConditional = mConditionalVertices.GetSize(); for (const lcMeshLoaderConditionalVertex& DataVertex : Data.mConditionalVertices) { lcMeshLoaderConditionalVertex& Vertex = mConditionalVertices.Add(); Vertex.Position[0] = lcMul31(DataVertex.Position[0], Transform); Vertex.Position[1] = lcMul31(DataVertex.Position[1], Transform); Vertex.Position[2] = lcMul31(DataVertex.Position[2], Transform); Vertex.Position[3] = lcMul31(DataVertex.Position[3], Transform); } for (const std::unique_ptr& SrcSection : Data.mSections) { quint32 ColorCode = SrcSection->mColor == 16 ? CurrentColorCode : SrcSection->mColor; lcTexture* Texture; lcMeshPrimitiveType PrimitiveType = SrcSection->mPrimitiveType; if (SrcSection->mTexture) Texture = SrcSection->mTexture; else if (TextureMap && SrcSection->mPrimitiveType == LC_MESH_TRIANGLES) { Texture = TextureMap->Texture; PrimitiveType = LC_MESH_TEXTURED_TRIANGLES; } else Texture = nullptr; lcLibraryMeshSection* DstSection = AddSection(SrcSection->mPrimitiveType, ColorCode, Texture); DstSection->mIndices.SetGrow(lcMin(DstSection->mIndices.GetSize(), 8 * 1024 * 1024)); DstSection->mIndices.AllocGrow(SrcSection->mIndices.GetSize()); if (PrimitiveType == LC_MESH_CONDITIONAL_LINES) { for (quint32 Index : SrcSection->mIndices) DstSection->mIndices.Add(BaseConditional + Index); } else if (!InvertWinding || (PrimitiveType == LC_MESH_LINES)) { for (quint32 Index : SrcSection->mIndices) DstSection->mIndices.Add(BaseIndex + Index); } else { for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx += 3) { DstSection->mIndices.Add(BaseIndex + SrcSection->mIndices[IndexIdx + 2]); DstSection->mIndices.Add(BaseIndex + SrcSection->mIndices[IndexIdx + 1]); DstSection->mIndices.Add(BaseIndex + SrcSection->mIndices[IndexIdx + 0]); } } } } void lcLibraryMeshData::AddVertices(lcMeshDataType MeshDataType, int VertexCount, int* BaseVertex, lcMeshLoaderVertex** VertexBuffer) { lcArray& Vertices = mData[MeshDataType].mVertices; int CurrentSize = Vertices.GetSize(); Vertices.SetSize(CurrentSize + VertexCount); *BaseVertex = CurrentSize; *VertexBuffer = &Vertices[CurrentSize]; } void lcLibraryMeshData::AddIndices(lcMeshDataType MeshDataType, lcMeshPrimitiveType PrimitiveType, quint32 ColorCode, int IndexCount, quint32** IndexBuffer) { lcLibraryMeshSection* Section = mData[MeshDataType].AddSection(PrimitiveType, ColorCode, nullptr); lcArray& Indices = Section->mIndices; int CurrentSize = Indices.GetSize(); Indices.SetSize(CurrentSize + IndexCount); *IndexBuffer = &Indices[CurrentSize]; } void lcLibraryMeshData::AddMeshData(const lcLibraryMeshData& Data, const lcMatrix44& Transform, quint32 CurrentColorCode, bool InvertWinding, bool InvertNormals, lcMeshLoaderTextureMap* TextureMap, lcMeshDataType OverrideDestIndex) { for (int MeshDataIdx = 0; MeshDataIdx < LC_NUM_MESHDATA_TYPES; MeshDataIdx++) { const int DestIndex = OverrideDestIndex == LC_MESHDATA_SHARED ? MeshDataIdx : OverrideDestIndex; mData[DestIndex].AddMeshData(Data.mData[MeshDataIdx], Transform, CurrentColorCode, InvertWinding, InvertNormals, TextureMap); } mHasTextures |= (Data.mHasTextures || TextureMap); } void lcLibraryMeshData::AddMeshDataNoDuplicateCheck(const lcLibraryMeshData& Data, const lcMatrix44& Transform, quint32 CurrentColorCode, bool InvertWinding, bool InvertNormals, lcMeshLoaderTextureMap* TextureMap, lcMeshDataType OverrideDestIndex) { for (int MeshDataIdx = 0; MeshDataIdx < LC_NUM_MESHDATA_TYPES; MeshDataIdx++) { const int DestIndex = OverrideDestIndex == LC_MESHDATA_SHARED ? MeshDataIdx : OverrideDestIndex; mData[DestIndex].AddMeshDataNoDuplicateCheck(Data.mData[MeshDataIdx], Transform, CurrentColorCode, InvertWinding, InvertNormals, TextureMap); } mHasTextures |= (Data.mHasTextures || TextureMap); } struct lcMergeSection { lcLibraryMeshSection* Shared; lcLibraryMeshSection* Lod; }; static bool lcLibraryMeshSectionCompare(const lcMergeSection& First, const lcMergeSection& Second) { lcLibraryMeshSection* a = First.Lod ? First.Lod : First.Shared; lcLibraryMeshSection* b = Second.Lod ? Second.Lod : Second.Shared; if (a->mPrimitiveType != b->mPrimitiveType) { int PrimitiveOrder[LC_MESH_NUM_PRIMITIVE_TYPES] = { LC_MESH_TRIANGLES, LC_MESH_TEXTURED_TRIANGLES, LC_MESH_LINES, LC_MESH_CONDITIONAL_LINES }; for (int PrimitiveType = 0; PrimitiveType < LC_MESH_NUM_PRIMITIVE_TYPES; PrimitiveType++) { int Primitive = PrimitiveOrder[PrimitiveType]; if (a->mPrimitiveType == Primitive) return true; if (b->mPrimitiveType == Primitive) return false; } } bool TranslucentA = lcIsColorTranslucent(a->mColor); bool TranslucentB = lcIsColorTranslucent(b->mColor); if (TranslucentA != TranslucentB) return !TranslucentA; return a->mColor > b->mColor; } lcMesh* lcLibraryMeshData::CreateMesh() { lcMesh* Mesh = new lcMesh(); int BaseVertices[LC_NUM_MESHDATA_TYPES]; int BaseTexturedVertices[LC_NUM_MESHDATA_TYPES]; int BaseConditionalVertices[LC_NUM_MESHDATA_TYPES]; int NumVertices = 0; int NumTexturedVertices = 0; int ConditionalVertexCount = 0; std::vector IndexRemap[LC_NUM_MESHDATA_TYPES]; std::vector TexturedIndexRemap[LC_NUM_MESHDATA_TYPES]; if (!mHasTextures) { for (int MeshDataIdx = 0; MeshDataIdx < LC_NUM_MESHDATA_TYPES; MeshDataIdx++) { std::vector>& Sections = mData[MeshDataIdx].mSections; for (const std::unique_ptr& Section : Sections) Section->mColor = lcGetColorIndex(Section->mColor); BaseVertices[MeshDataIdx] = NumVertices; NumVertices += mData[MeshDataIdx].mVertices.GetSize(); BaseConditionalVertices[MeshDataIdx] = ConditionalVertexCount; ConditionalVertexCount += mData[MeshDataIdx].mConditionalVertices.GetSize(); } } else { for (int MeshDataIdx = 0; MeshDataIdx < LC_NUM_MESHDATA_TYPES; MeshDataIdx++) { std::vector>& Sections = mData[MeshDataIdx].mSections; for (const std::unique_ptr& Section : Sections) Section->mColor = lcGetColorIndex(Section->mColor); BaseVertices[MeshDataIdx] = NumVertices; BaseTexturedVertices[MeshDataIdx] = NumTexturedVertices; const lcArray& Vertices = mData[MeshDataIdx].mVertices; IndexRemap[MeshDataIdx].resize(Vertices.GetSize()); TexturedIndexRemap[MeshDataIdx].resize(Vertices.GetSize()); for (int VertexIdx = 0; VertexIdx < Vertices.GetSize(); VertexIdx++) { const lcMeshLoaderVertex& Vertex = Vertices[VertexIdx]; if (Vertex.Usage & LC_LIBRARY_VERTEX_UNTEXTURED) { IndexRemap[MeshDataIdx][VertexIdx] = NumVertices; NumVertices++; } if (Vertex.Usage & LC_LIBRARY_VERTEX_TEXTURED) { TexturedIndexRemap[MeshDataIdx][VertexIdx] = NumTexturedVertices; NumTexturedVertices++; } } BaseConditionalVertices[MeshDataIdx] = ConditionalVertexCount; ConditionalVertexCount += mData[MeshDataIdx].mConditionalVertices.GetSize(); } } quint16 NumSections[LC_NUM_MESH_LODS]; int NumIndices = 0; lcArray MergeSections[LC_NUM_MESH_LODS]; for (int LodIdx = 0; LodIdx < LC_NUM_MESH_LODS; LodIdx++) { std::vector>& SharedSections = mData[LC_MESHDATA_SHARED].mSections; std::vector>& Sections = mData[LodIdx].mSections; for (std::unique_ptr& SharedSection : SharedSections) { NumIndices += SharedSection->mIndices.GetSize(); lcMergeSection& MergeSection = MergeSections[LodIdx].Add(); MergeSection.Shared = SharedSection.get(); MergeSection.Lod = nullptr; } for (std::unique_ptr& Section : Sections) { bool Found = false; NumIndices += Section->mIndices.GetSize(); for (int SharedSectionIdx = 0; SharedSectionIdx < (int)SharedSections.size(); SharedSectionIdx++) { lcLibraryMeshSection* SharedSection = SharedSections[SharedSectionIdx].get(); if (SharedSection->mColor == Section->mColor && SharedSection->mPrimitiveType == Section->mPrimitiveType && SharedSection->mTexture == Section->mTexture) { lcMergeSection& MergeSection = MergeSections[LodIdx][SharedSectionIdx]; MergeSection.Lod = Section.get(); Found = true; break; } } if (!Found) { lcMergeSection& MergeSection = MergeSections[LodIdx].Add(); MergeSection.Shared = nullptr; MergeSection.Lod = Section.get(); } } NumSections[LodIdx] = MergeSections[LodIdx].GetSize(); std::sort(MergeSections[LodIdx].begin(), MergeSections[LodIdx].end(), lcLibraryMeshSectionCompare); } Mesh->Create(NumSections, NumVertices, NumTexturedVertices, ConditionalVertexCount, NumIndices); lcVertex* DstVerts = (lcVertex*)Mesh->mVertexData; if (!mHasTextures) { for (lcMeshLoaderTypeData& Data : mData) { for (const lcMeshLoaderVertex& SrcVertex : Data.mVertices) { lcVertex& DstVertex = *DstVerts++; DstVertex.Position = lcVector3LDrawToLeoCAD(SrcVertex.Position); DstVertex.Normal = lcPackNormal(lcVector3LDrawToLeoCAD(SrcVertex.Normal)); } } lcVertexConditional* DstConditionalVerts = (lcVertexConditional*)DstVerts; for (lcMeshLoaderTypeData& Data : mData) { for (const lcMeshLoaderConditionalVertex& SrcVertex : Data.mConditionalVertices) { lcVertexConditional& DstVertex = *DstConditionalVerts++; DstVertex.Position1 = lcVector3LDrawToLeoCAD(SrcVertex.Position[0]); DstVertex.Position2 = lcVector3LDrawToLeoCAD(SrcVertex.Position[1]); DstVertex.Position3 = lcVector3LDrawToLeoCAD(SrcVertex.Position[2]); DstVertex.Position4 = lcVector3LDrawToLeoCAD(SrcVertex.Position[3]); } } } else { for (lcMeshLoaderTypeData& Data : mData) { for (const lcMeshLoaderVertex& SrcVertex : Data.mVertices) { if ((SrcVertex.Usage & LC_LIBRARY_VERTEX_UNTEXTURED) == 0) continue; lcVertex& DstVertex = *DstVerts++; DstVertex.Position = lcVector3LDrawToLeoCAD(SrcVertex.Position); DstVertex.Normal = lcPackNormal(lcVector3LDrawToLeoCAD(SrcVertex.Normal)); } } lcVertexTextured* DstTexturedVerts = (lcVertexTextured*)DstVerts; for (lcMeshLoaderTypeData& Data : mData) { for (const lcMeshLoaderVertex& SrcVertex : Data.mVertices) { if ((SrcVertex.Usage & LC_LIBRARY_VERTEX_TEXTURED) == 0) continue; lcVertexTextured& DstVertex = *DstTexturedVerts++; DstVertex.Position = lcVector3LDrawToLeoCAD(SrcVertex.Position); DstVertex.Normal = lcPackNormal(lcVector3LDrawToLeoCAD(SrcVertex.Normal)); DstVertex.TexCoord = SrcVertex.TexCoord; } } for (int MeshDataIdx = 0; MeshDataIdx < LC_NUM_MESHDATA_TYPES; MeshDataIdx++) { for (const std::unique_ptr& Section : mData[MeshDataIdx].mSections) { if (Section->mPrimitiveType == LC_MESH_TRIANGLES) { for (quint32& Index : Section->mIndices) Index = IndexRemap[MeshDataIdx][Index]; } else if (Section->mPrimitiveType != LC_MESH_CONDITIONAL_LINES) { if (!Section->mTexture) { for (quint32& Index : Section->mIndices) Index = IndexRemap[MeshDataIdx][Index]; } else { for (quint32& Index : Section->mIndices) Index = TexturedIndexRemap[MeshDataIdx][Index]; } } } } lcVertexConditional* DstConditionalVerts = (lcVertexConditional*)DstTexturedVerts; for (lcMeshLoaderTypeData& Data : mData) { for (const lcMeshLoaderConditionalVertex& SrcVertex : Data.mConditionalVertices) { lcVertexConditional& DstVertex = *DstConditionalVerts++; DstVertex.Position1 = lcVector3LDrawToLeoCAD(SrcVertex.Position[0]); DstVertex.Position2 = lcVector3LDrawToLeoCAD(SrcVertex.Position[1]); DstVertex.Position3 = lcVector3LDrawToLeoCAD(SrcVertex.Position[2]); DstVertex.Position4 = lcVector3LDrawToLeoCAD(SrcVertex.Position[3]); } } } NumIndices = 0; for (int LodIdx = 0; LodIdx < LC_NUM_MESH_LODS; LodIdx++) { for (int SectionIdx = 0; SectionIdx < MergeSections[LodIdx].GetSize(); SectionIdx++) { lcMergeSection& MergeSection = MergeSections[LodIdx][SectionIdx]; lcMeshSection& DstSection = Mesh->mLods[LodIdx].Sections[SectionIdx]; lcLibraryMeshSection* SetupSection = MergeSection.Shared ? MergeSection.Shared : MergeSection.Lod; DstSection.ColorIndex = SetupSection->mColor; DstSection.PrimitiveType = SetupSection->mPrimitiveType; DstSection.NumIndices = 0; DstSection.Texture = SetupSection->mTexture; if (DstSection.Texture) DstSection.Texture->AddRef(); if (Mesh->mIndexType == GL_UNSIGNED_SHORT) { DstSection.IndexOffset = NumIndices * 2; quint16* Index = (quint16*)Mesh->mIndexData + NumIndices; if (MergeSection.Shared) { lcLibraryMeshSection* SrcSection = MergeSection.Shared; if (DstSection.PrimitiveType != LC_MESH_CONDITIONAL_LINES) { if (!mHasTextures) { quint16 BaseVertex = DstSection.Texture ? BaseTexturedVertices[LC_MESHDATA_SHARED] : BaseVertices[LC_MESHDATA_SHARED]; for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++) *Index++ = BaseVertex + SrcSection->mIndices[IndexIdx]; } else for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++) *Index++ = SrcSection->mIndices[IndexIdx]; } else { quint16 BaseVertex = BaseConditionalVertices[LC_MESHDATA_SHARED]; for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++) *Index++ = BaseVertex + SrcSection->mIndices[IndexIdx]; } DstSection.NumIndices += SrcSection->mIndices.GetSize(); } if (MergeSection.Lod) { lcLibraryMeshSection* SrcSection = MergeSection.Lod; if (DstSection.PrimitiveType != LC_MESH_CONDITIONAL_LINES) { if (!mHasTextures) { quint16 BaseVertex = DstSection.Texture ? BaseTexturedVertices[LodIdx] : BaseVertices[LodIdx]; for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++) *Index++ = BaseVertex + SrcSection->mIndices[IndexIdx]; } else for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++) *Index++ = SrcSection->mIndices[IndexIdx]; } else { quint16 BaseVertex = BaseConditionalVertices[LodIdx]; for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++) *Index++ = BaseVertex + SrcSection->mIndices[IndexIdx]; } DstSection.NumIndices += SrcSection->mIndices.GetSize(); } } else { DstSection.IndexOffset = NumIndices * 4; quint32* Index = (quint32*)Mesh->mIndexData + NumIndices; if (MergeSection.Shared) { lcLibraryMeshSection* SrcSection = MergeSection.Shared; if (DstSection.PrimitiveType != LC_MESH_CONDITIONAL_LINES) { if (!mHasTextures) { quint32 BaseVertex = DstSection.Texture ? BaseTexturedVertices[LC_MESHDATA_SHARED] : BaseVertices[LC_MESHDATA_SHARED]; for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++) *Index++ = BaseVertex + SrcSection->mIndices[IndexIdx]; } else for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++) *Index++ = SrcSection->mIndices[IndexIdx]; } else { quint32 BaseVertex = BaseConditionalVertices[LC_MESHDATA_SHARED]; for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++) *Index++ = BaseVertex + SrcSection->mIndices[IndexIdx]; } DstSection.NumIndices += SrcSection->mIndices.GetSize(); } if (MergeSection.Lod) { lcLibraryMeshSection* SrcSection = MergeSection.Lod; if (DstSection.PrimitiveType != LC_MESH_CONDITIONAL_LINES) { if (!mHasTextures) { quint32 BaseVertex = DstSection.Texture ? BaseTexturedVertices[LodIdx] : BaseVertices[LodIdx]; for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++) *Index++ = BaseVertex + SrcSection->mIndices[IndexIdx]; DstSection.NumIndices += SrcSection->mIndices.GetSize(); } else for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++) *Index++ = SrcSection->mIndices[IndexIdx]; } else { quint32 BaseVertex = BaseConditionalVertices[LodIdx]; for (int IndexIdx = 0; IndexIdx < SrcSection->mIndices.GetSize(); IndexIdx++) *Index++ = BaseVertex + SrcSection->mIndices[IndexIdx]; } DstSection.NumIndices += SrcSection->mIndices.GetSize(); } } if (DstSection.PrimitiveType == LC_MESH_TRIANGLES || DstSection.PrimitiveType == LC_MESH_TEXTURED_TRIANGLES) { if (DstSection.ColorIndex == gDefaultColor) Mesh->mFlags |= lcMeshFlag::HasDefault; else { if (lcIsColorTranslucent(DstSection.ColorIndex)) Mesh->mFlags |= lcMeshFlag::HasTranslucent; else Mesh->mFlags |= lcMeshFlag::HasSolid; } } else Mesh->mFlags |= lcMeshFlag::HasLines; if (DstSection.PrimitiveType == LC_MESH_TEXTURED_TRIANGLES) Mesh->mFlags |= lcMeshFlag::HasTexture; NumIndices += DstSection.NumIndices; } } if (mHasStyleStud) Mesh->mFlags |= lcMeshFlag::HasStyleStud; UpdateMeshBoundingBox(Mesh); return Mesh; } void lcLibraryMeshData::UpdateMeshBoundingBox(lcMesh* Mesh) { lcVector3 MeshMin(FLT_MAX, FLT_MAX, FLT_MAX), MeshMax(-FLT_MAX, -FLT_MAX, -FLT_MAX); bool UpdatedBoundingBox = false; for (int LodIdx = 0; LodIdx < LC_NUM_MESH_LODS; LodIdx++) { lcMeshLod& Lod = Mesh->mLods[LodIdx]; for (int SectionIdx = 0; SectionIdx < Lod.NumSections; SectionIdx++) { lcMeshSection& Section = Lod.Sections[SectionIdx]; lcVector3 SectionMin(FLT_MAX, FLT_MAX, FLT_MAX), SectionMax(-FLT_MAX, -FLT_MAX, -FLT_MAX); if (Mesh->mIndexType == GL_UNSIGNED_SHORT) UpdateMeshSectionBoundingBox(Mesh, Section, SectionMin, SectionMax); else UpdateMeshSectionBoundingBox(Mesh, Section, SectionMin, SectionMax); Section.BoundingBox.Max = SectionMax; Section.BoundingBox.Min = SectionMin; Section.Radius = lcLength((SectionMax - SectionMin) / 2.0f); if (Section.PrimitiveType == LC_MESH_TRIANGLES || Section.PrimitiveType == LC_MESH_TEXTURED_TRIANGLES) { UpdatedBoundingBox = true; MeshMin = lcMin(SectionMin, MeshMin); MeshMax = lcMax(SectionMax, MeshMax); } } } if (!UpdatedBoundingBox) MeshMin = MeshMax = lcVector3(0.0f, 0.0f, 0.0f); Mesh->mBoundingBox.Max = MeshMax; Mesh->mBoundingBox.Min = MeshMin; Mesh->mRadius = lcLength((MeshMax - MeshMin) / 2.0f); } template void lcLibraryMeshData::UpdateMeshSectionBoundingBox(lcMesh* Mesh, lcMeshSection& Section, lcVector3& SectionMin, lcVector3& SectionMax) { const IndexType* IndexBuffer = reinterpret_cast(static_cast(Mesh->mIndexData) + Section.IndexOffset); if (!Section.Texture) { if (Section.PrimitiveType != LC_MESH_CONDITIONAL_LINES) { const lcVertex* VertexBuffer = Mesh->GetVertexData(); for (int Index = 0; Index < Section.NumIndices; Index++) { const lcVector3& Position = VertexBuffer[IndexBuffer[Index]].Position; SectionMin = lcMin(SectionMin, Position); SectionMax = lcMax(SectionMax, Position); } } else { const lcVertexConditional* VertexBuffer = Mesh->GetConditionalVertexData(); for (int Index = 0; Index < Section.NumIndices; Index++) { const lcVector3& Position = VertexBuffer[IndexBuffer[Index]].Position1; SectionMin = lcMin(SectionMin, Position); SectionMax = lcMax(SectionMax, Position); } } } else { const lcVertexTextured* VertexBuffer = Mesh->GetTexturedVertexData(); for (int Index = 0; Index < Section.NumIndices; Index++) { const lcVector3& Position = VertexBuffer[IndexBuffer[Index]].Position; SectionMin = lcMin(SectionMin, Position); SectionMax = lcMax(SectionMax, Position); } } } lcMeshLoader::lcMeshLoader(lcLibraryMeshData& MeshData, bool Optimize, Project* CurrentProject, bool SearchProjectFolder) : mMeshData(MeshData), mOptimize(Optimize), mCurrentProject(CurrentProject), mSearchProjectFolder(SearchProjectFolder) { } bool lcMeshLoader::LoadMesh(lcFile& File, lcMeshDataType MeshDataType) { lcArray TextureStack; return ReadMeshData(File, lcMatrix44Identity(), 16, false, TextureStack, MeshDataType); } bool lcMeshLoader::ReadMeshData(lcFile& File, const lcMatrix44& CurrentTransform, quint32 CurrentColorCode, bool InvertWinding, lcArray& TextureStack, lcMeshDataType MeshDataType) { char Buffer[1024]; char* Line; bool InvertNext = false; bool WindingCCW = !InvertWinding; lcPiecesLibrary* Library = lcGetPiecesLibrary(); while (File.ReadLine(Buffer, sizeof(Buffer))) { if (Library->ShouldCancelLoading()) return false; quint32 ColorCode, ColorCodeHex; bool LastToken = false; int LineType; Line = Buffer; if (sscanf(Line, "%d", &LineType) != 1) continue; if (LineType == 0) { char* Token = Line; while (*Token && *Token <= 32) Token++; Token++; while (*Token && *Token <= 32) Token++; char* End = Token; while (*End && *End > 32) End++; LastToken = (*End == 0); *End = 0; if (!strcmp(Token, "!TEXMAP")) { Token += 8; while (*Token && *Token <= 32) Token++; End = Token; while (*End && *End > 32) End++; *End = 0; bool Start = false; bool Next = false; if (!strcmp(Token, "START")) { Token += 6; Start = true; } else if (!strcmp(Token, "NEXT")) { Token += 5; Next = true; } if (Start || Next) { while (*Token && *Token <= 32) Token++; End = Token; while (*End && *End > 32) End++; *End = 0; auto CleanTextureName = [](char* FileName) { char* Ch; for (Ch = FileName; *Ch; Ch++) { if (*Ch >= 'a' && *Ch <= 'z') *Ch = *Ch + 'A' - 'a'; else if (*Ch == '\\') *Ch = '/'; } if (Ch - FileName > 4) { Ch -= 4; if (!memcmp(Ch, ".PNG", 4)) *Ch = 0; } }; if (!strcmp(Token, "PLANAR")) { Token += 7; char FileName[LC_MAXPATH]; lcVector3 Points[3]; sscanf(Token, "%f %f %f %f %f %f %f %f %f %s", &Points[0].x, &Points[0].y, &Points[0].z, &Points[1].x, &Points[1].y, &Points[1].z, &Points[2].x, &Points[2].y, &Points[2].z, FileName); Points[0] = lcMul31(Points[0], CurrentTransform); Points[1] = lcMul31(Points[1], CurrentTransform); Points[2] = lcMul31(Points[2], CurrentTransform); CleanTextureName(FileName); lcMeshLoaderTextureMap& Map = TextureStack.Add(); Map.Next = false; Map.Fallback = false; Map.Texture = Library->FindTexture(FileName, mCurrentProject, mSearchProjectFolder); Map.Type = lcMeshLoaderTextureMapType::Planar; for (int EdgeIdx = 0; EdgeIdx < 2; EdgeIdx++) { lcVector3 Normal = Points[EdgeIdx + 1] - Points[0]; float Length = lcLength(Normal); Normal /= Length; Map.Params.Planar.Planes[EdgeIdx].x = Normal.x / Length; Map.Params.Planar.Planes[EdgeIdx].y = Normal.y / Length; Map.Params.Planar.Planes[EdgeIdx].z = Normal.z / Length; Map.Params.Planar.Planes[EdgeIdx].w = -lcDot(Normal, Points[0]) / Length; } } else if (!strcmp(Token, "CYLINDRICAL")) { Token += 12; char FileName[LC_MAXPATH]; lcVector3 Points[3]; float Angle; sscanf(Token, "%f %f %f %f %f %f %f %f %f %f %s", &Points[0].x, &Points[0].y, &Points[0].z, &Points[1].x, &Points[1].y, &Points[1].z, &Points[2].x, &Points[2].y, &Points[2].z, &Angle, FileName); Points[0] = lcMul31(Points[0], CurrentTransform); Points[1] = lcMul31(Points[1], CurrentTransform); Points[2] = lcMul31(Points[2], CurrentTransform); CleanTextureName(FileName); lcMeshLoaderTextureMap& Map = TextureStack.Add(); Map.Next = false; Map.Fallback = false; Map.Texture = Library->FindTexture(FileName, mCurrentProject, mSearchProjectFolder); Map.Type = lcMeshLoaderTextureMapType::Cylindrical; lcVector3 Up = Points[0] - Points[1]; float UpLength = lcLength(Up); lcVector3 Front = lcNormalize(Points[2] - Points[1]); lcVector3 Plane1Normal = Up / UpLength; lcVector3 Plane2Normal = lcNormalize(lcCross(Front, Up)); Map.Params.Cylindrical.FrontPlane = lcVector4(Front, -lcDot(Front, Points[1])); Map.Params.Cylindrical.UpLength = UpLength; Map.Params.Cylindrical.Plane1 = lcVector4(Plane1Normal, -lcDot(Plane1Normal, Points[1])); Map.Params.Cylindrical.Plane2 = lcVector4(Plane2Normal, -lcDot(Plane2Normal, Points[1])); Map.Angle1 = 360.0f / Angle; } else if (!strcmp(Token, "SPHERICAL")) { Token += 10; char FileName[LC_MAXPATH]; lcVector3 Points[3]; float Angle1, Angle2; sscanf(Token, "%f %f %f %f %f %f %f %f %f %f %f %s", &Points[0].x, &Points[0].y, &Points[0].z, &Points[1].x, &Points[1].y, &Points[1].z, &Points[2].x, &Points[2].y, &Points[2].z, &Angle1, &Angle2, FileName); Points[0] = lcMul31(Points[0], CurrentTransform); Points[1] = lcMul31(Points[1], CurrentTransform); Points[2] = lcMul31(Points[2], CurrentTransform); CleanTextureName(FileName); lcMeshLoaderTextureMap& Map = TextureStack.Add(); Map.Next = false; Map.Fallback = false; Map.Texture = Library->FindTexture(FileName, mCurrentProject, mSearchProjectFolder); Map.Type = lcMeshLoaderTextureMapType::Spherical; lcVector3 Front = lcNormalize(Points[1] - Points[0]); lcVector3 Plane1Normal = lcNormalize(lcCross(Front, Points[2] - Points[0])); lcVector3 Plane2Normal = lcNormalize(lcCross(Plane1Normal, Front)); Map.Params.Spherical.FrontPlane = lcVector4(Front, -lcDot(Front, Points[0])); Map.Params.Spherical.Center = Points[0]; Map.Params.Spherical.Plane1 = lcVector4(Plane1Normal, -lcDot(Plane1Normal, Points[0])); Map.Params.Spherical.Plane2 = lcVector4(Plane2Normal, -lcDot(Plane2Normal, Points[0])); Map.Angle1 = 360.0f / Angle1; Map.Angle2 = 180.0f / Angle2; } } else if (!strcmp(Token, "FALLBACK")) { if (TextureStack.GetSize()) TextureStack[TextureStack.GetSize() - 1].Fallback = true; } else if (!strcmp(Token, "END")) { if (TextureStack.GetSize()) TextureStack.RemoveIndex(TextureStack.GetSize() - 1); } continue; } else if (!strcmp(Token, "BFC")) { while (!LastToken) { Token = End + 1; while (*Token && *Token <= 32) Token++; End = Token; while (*End && *End > 32) End++; LastToken = (*End == 0); *End = 0; if (!strcmp(Token, "INVERTNEXT")) InvertNext = true; else if (!strcmp(Token, "CCW")) WindingCCW = !InvertWinding; else if (!strcmp(Token, "CW")) WindingCCW = InvertWinding; } } else if (!strcmp(Token, "!:")) { Token += 3; Line = Token; if (!TextureStack.GetSize()) continue; } else continue; } if (sscanf(Line, "%d %d", &LineType, &ColorCode) != 2) continue; if (LineType < 1 || LineType > 5) continue; if (ColorCode == 0) { sscanf(Line, "%d %i", &LineType, &ColorCodeHex); if (ColorCode != ColorCodeHex) ColorCode = ColorCodeHex | LC_COLOR_DIRECT; } if (ColorCode == 16) ColorCode = CurrentColorCode; lcMeshLoaderTextureMap* TextureMap = nullptr; if (TextureStack.GetSize()) { TextureMap = &TextureStack[TextureStack.GetSize() - 1]; if (TextureMap->Texture) { if (TextureMap->Fallback) continue; } else { if (!TextureMap->Fallback) continue; TextureMap = nullptr; } } int Dummy; lcVector3 Points[4]; switch (LineType) { case 1: { char OriginalFileName[LC_MAXPATH]; float fm[12]; sscanf(Line, "%d %i %f %f %f %f %f %f %f %f %f %f %f %f %s", &LineType, &Dummy, &fm[0], &fm[1], &fm[2], &fm[3], &fm[4], &fm[5], &fm[6], &fm[7], &fm[8], &fm[9], &fm[10], &fm[11], OriginalFileName); char FileName[LC_MAXPATH]; strcpy(FileName, OriginalFileName); char* Ch; for (Ch = FileName; *Ch; Ch++) { if (*Ch >= 'a' && *Ch <= 'z') *Ch = *Ch + 'A' - 'a'; else if (*Ch == '\\') *Ch = '/'; } lcLibraryPrimitive* Primitive = !TextureMap ? Library->FindPrimitive(FileName) : nullptr; lcMatrix44 IncludeTransform(lcVector4(fm[3], fm[6], fm[9], 0.0f), lcVector4(fm[4], fm[7], fm[10], 0.0f), lcVector4(fm[5], fm[8], fm[11], 0.0f), lcVector4(fm[0], fm[1], fm[2], 1.0f)); IncludeTransform = lcMul(IncludeTransform, CurrentTransform); bool Mirror = IncludeTransform.Determinant() < 0.0f; auto FileCallback = [this, &IncludeTransform, &ColorCode, &Mirror, &InvertNext, &TextureStack, &MeshDataType](lcFile& File) { ReadMeshData(File, IncludeTransform, ColorCode, Mirror ^ InvertNext, TextureStack, MeshDataType); }; if (Primitive) { if (Primitive->mState != lcPrimitiveState::Loaded && !Library->LoadPrimitive(Primitive)) break; if (Primitive->mStud) mMeshData.AddMeshDataNoDuplicateCheck(Primitive->mMeshData, IncludeTransform, ColorCode, Mirror ^ InvertNext, InvertNext, TextureMap, MeshDataType); else if (!Primitive->mSubFile) { if (mOptimize) mMeshData.AddMeshData(Primitive->mMeshData, IncludeTransform, ColorCode, Mirror ^ InvertNext, InvertNext, TextureMap, MeshDataType); else mMeshData.AddMeshDataNoDuplicateCheck(Primitive->mMeshData, IncludeTransform, ColorCode, Mirror ^ InvertNext, InvertNext, TextureMap, MeshDataType); } else Library->GetPrimitiveFile(Primitive, FileCallback); mMeshData.mHasStyleStud |= Primitive->mStudStyle | Primitive->mMeshData.mHasStyleStud; } else Library->GetPieceFile(FileName, FileCallback); } break; case 2: sscanf(Line, "%d %i %f %f %f %f %f %f", &LineType, &Dummy, &Points[0].x, &Points[0].y, &Points[0].z, &Points[1].x, &Points[1].y, &Points[1].z); Points[0] = lcMul31(Points[0], CurrentTransform); Points[1] = lcMul31(Points[1], CurrentTransform); mMeshData.mData[MeshDataType].ProcessLine(LineType, ColorCode, WindingCCW, Points, mOptimize); break; case 3: sscanf(Line, "%d %i %f %f %f %f %f %f %f %f %f", &LineType, &Dummy, &Points[0].x, &Points[0].y, &Points[0].z, &Points[1].x, &Points[1].y, &Points[1].z, &Points[2].x, &Points[2].y, &Points[2].z); Points[0] = lcMul31(Points[0], CurrentTransform); Points[1] = lcMul31(Points[1], CurrentTransform); Points[2] = lcMul31(Points[2], CurrentTransform); if (TextureMap) { mMeshData.mHasTextures = true; mMeshData.mData[MeshDataType].ProcessTexturedLine(LineType, ColorCode, WindingCCW, *TextureMap, Points, mOptimize); if (TextureMap->Next) TextureStack.RemoveIndex(TextureStack.GetSize() - 1); } else mMeshData.mData[MeshDataType].ProcessLine(LineType, ColorCode, WindingCCW, Points, mOptimize); break; case 4: sscanf(Line, "%d %i %f %f %f %f %f %f %f %f %f %f %f %f", &LineType, &Dummy, &Points[0].x, &Points[0].y, &Points[0].z, &Points[1].x, &Points[1].y, &Points[1].z, &Points[2].x, &Points[2].y, &Points[2].z, &Points[3].x, &Points[3].y, &Points[3].z); Points[0] = lcMul31(Points[0], CurrentTransform); Points[1] = lcMul31(Points[1], CurrentTransform); Points[2] = lcMul31(Points[2], CurrentTransform); Points[3] = lcMul31(Points[3], CurrentTransform); if (TextureMap) { mMeshData.mHasTextures = true; mMeshData.mData[MeshDataType].ProcessTexturedLine(LineType, ColorCode, WindingCCW, *TextureMap, Points, mOptimize); if (TextureMap->Next) TextureStack.RemoveIndex(TextureStack.GetSize() - 1); } else mMeshData.mData[MeshDataType].ProcessLine(LineType, ColorCode, WindingCCW, Points, mOptimize); break; case 5: sscanf(Line, "%d %i %f %f %f %f %f %f %f %f %f %f %f %f", &LineType, &Dummy, &Points[0].x, &Points[0].y, &Points[0].z, &Points[1].x, &Points[1].y, &Points[1].z, &Points[2].x, &Points[2].y, &Points[2].z, &Points[3].x, &Points[3].y, &Points[3].z); Points[0] = lcMul31(Points[0], CurrentTransform); Points[1] = lcMul31(Points[1], CurrentTransform); Points[2] = lcMul31(Points[2], CurrentTransform); Points[3] = lcMul31(Points[3], CurrentTransform); mMeshData.mData[MeshDataType].ProcessLine(LineType, ColorCode, WindingCCW, Points, mOptimize); break; } InvertNext = false; } return true; }