#pragma once #include <math.h> #include <float.h> #define LC_DTOR (static_cast<float>(M_PI / 180)) #define LC_RTOD (static_cast<float>(180 / M_PI)) #define LC_PI (static_cast<float>(M_PI)) #define LC_2PI (static_cast<float>(2 * M_PI)) #define LC_RGB_EPSILON (static_cast<float>(0.5f / 255.0f)) #define LC_RGB(r,g,b) LC_RGBA(r,g,b,255) #define LC_RGBA(r,g,b,a) ((quint32)(((quint8) (r) | ((quint16) (g) << 8)) | (((quint32) (quint8) (b)) << 16) | (((quint32) (quint8) (a)) << 24))) #define LC_RGBA_RED(rgba) ((quint8)(((rgba) >> 0) & 0xff)) #define LC_RGBA_GREEN(rgba) ((quint8)(((rgba) >> 8) & 0xff)) #define LC_RGBA_BLUE(rgba) ((quint8)(((rgba) >> 16) & 0xff)) #define LC_RGBA_ALPHA(rgba) ((quint8)(((rgba) >> 24) & 0xff)) #define LC_SRGB_TO_LINEAR(v) (powf(v, 2.2f)) #define LC_LINEAR_TO_SRGB(v) (powf(v, 1.0f / 2.2f)) inline quint32 lcRGBAFromQColor(const QColor& Color) { return LC_RGBA(Color.red(), Color.green(), Color.blue(), Color.alpha()); } inline QColor lcQColorFromRGBA(quint32 RGBA) { return QColor::fromRgb(LC_RGBA_RED(RGBA), LC_RGBA_GREEN(RGBA), LC_RGBA_BLUE(RGBA), LC_RGBA_ALPHA(RGBA)); } template<typename T> inline T lcMin(const T& a, const T& b) { return a < b ? a : b; } template<typename T> inline T lcMax(const T& a, const T& b) { return a > b ? a : b; } template<typename T> inline T lcClamp(const T& Value, const T& Min, const T& Max) { if (Value > Max) return Max; else if (Value < Min) return Min; else return Value; } class lcVector2i { public: lcVector2i() { } constexpr lcVector2i(const int _x, const int _y) : x(_x), y(_y) { } int x, y; }; inline bool operator==(const lcVector2i& a, const lcVector2i& b) { return a.x == b.x && a.y == b.y; } inline bool operator!=(const lcVector2i& a, const lcVector2i& b) { return a.x != b.x || a.y != b.y; } class lcVector2 { public: lcVector2() { } constexpr lcVector2(const float _x, const float _y) : x(_x), y(_y) { } operator const float*() const { return (const float*)this; } operator float*() { return (float*)this; } const float& operator[](int i) const { return ((float*)this)[i]; } float& operator[](int i) { return ((float*)this)[i]; } bool IsNan() const { return std::isnan(x) || std::isnan(y); } float x, y; }; class lcVector3 { public: lcVector3() { } constexpr lcVector3(const float _x, const float _y, const float _z) : x(_x), y(_y), z(_z) { } explicit lcVector3(const lcVector4& v); operator const float*() const { return (const float*)this; } operator float*() { return (float*)this; } const float& operator[](int i) const { return ((float*)this)[i]; } float& operator[](int i) { return ((float*)this)[i]; } bool IsNan() const { return std::isnan(x) || std::isnan(y) || std::isnan(z); } void Normalize(); float Length() const; float LengthSquared() const; float x, y, z; }; class lcVector4 { public: lcVector4() { } constexpr lcVector4(const float _x, const float _y, const float _z, const float _w) : x(_x), y(_y), z(_z), w(_w) { } constexpr lcVector4(const lcVector3& _xyz, const float _w) : x(_xyz.x), y(_xyz.y), z(_xyz.z), w(_w) { } operator const float*() const { return (const float*)this; } operator float*() { return (float*)this; } const float& operator[](int i) const { return ((float*)this)[i]; } float& operator[](int i) { return ((float*)this)[i]; } bool IsNan() const { return std::isnan(x) || std::isnan(y) || std::isnan(z) || std::isnan(w); } float x, y, z, w; }; class lcMatrix33 { public: lcMatrix33() { } lcMatrix33(const lcVector3& _x, const lcVector3& _y, const lcVector3& _z) { r[0] = _x; r[1] = _y; r[2] = _z; } explicit lcMatrix33(const lcMatrix44& Matrix); operator const float*() const { return (const float*)this; } operator float*() { return (float*)this; } const lcVector3& operator[](int i) const { return r[i]; } lcVector3& operator[](int i) { return r[i]; } void Orthonormalize(); lcVector3 r[3]; }; class lcMatrix44 { public: lcMatrix44() { } lcMatrix44(const lcVector4& _x, const lcVector4& _y, const lcVector4& _z, const lcVector4& _w) { r[0] = _x; r[1] = _y; r[2] = _z; r[3] = _w; } lcMatrix44(const lcMatrix33& Rotation, const lcVector3& Translation) { r[0] = lcVector4(Rotation[0][0], Rotation[0][1], Rotation[0][2], 0.0f); r[1] = lcVector4(Rotation[1][0], Rotation[1][1], Rotation[1][2], 0.0f); r[2] = lcVector4(Rotation[2][0], Rotation[2][1], Rotation[2][2], 0.0f); r[3] = lcVector4(Translation, 1.0f); } lcVector3 GetTranslation() const { return lcVector3(r[3][0], r[3][1], r[3][2]); } void SetTranslation(const lcVector3& Translation) { r[3] = lcVector4(Translation[0], Translation[1], Translation[2], 1.0f); } operator const float*() const { return (const float*)this; } operator float*() { return (float*)this; } const lcVector4& operator[](int i) const { return r[i]; } lcVector4& operator[](int i) { return r[i]; } float Determinant() const; lcVector4 r[4]; }; inline lcVector3::lcVector3(const lcVector4& v) : x(v.x), y(v.y), z(v.z) { } inline lcVector3 operator+(const lcVector3& a, const lcVector3& b) { return lcVector3(a.x + b.x, a.y + b.y, a.z + b.z); } inline lcVector3 operator-(const lcVector3& a, const lcVector3& b) { return lcVector3(a.x - b.x, a.y - b.y, a.z - b.z); } inline lcVector3 operator*(const lcVector3& a, const lcVector3& b) { return lcVector3(a.x * b.x, a.y * b.y, a.z * b.z); } inline lcVector3 operator/(const lcVector3& a, const lcVector3& b) { return lcVector3(a.x / b.x, a.y / b.y, a.z / b.z); } inline lcVector3 operator*(const lcVector3& a, float b) { return lcVector3(a.x * b, a.y * b, a.z * b); } inline lcVector3 operator/(const lcVector3& a, float b) { return lcVector3(a.x / b, a.y / b, a.z / b); } inline lcVector3 operator*(float a, const lcVector3& b) { return lcVector3(b.x * a, b.y * a, b.z * a); } inline lcVector3 operator/(float a, const lcVector3& b) { return lcVector3(b.x / a, b.y / a, b.z / a); } inline lcVector3 operator-(const lcVector3& a) { return lcVector3(-a.x, -a.y, -a.z); } inline lcVector3& operator+=(lcVector3& a, const lcVector3& b) { a.x += b.x; a.y += b.y; a.z += b.z; return a; } inline lcVector3& operator-=(lcVector3& a, const lcVector3& b) { a.x -= b.x; a.y -= b.y; a.z -= b.z; return a; } inline lcVector3& operator*=(lcVector3& a, const lcVector3& b) { a.x *= b.x; a.y *= b.y; a.z *= b.z; return a; } inline lcVector3& operator/=(lcVector3& a, const lcVector3& b) { a.x /= b.x; a.y /= b.y; a.z /= b.z; return a; } inline lcVector3& operator+=(lcVector3& a, float b) { a.x += b; a.y += b; a.z += b; return a; } inline lcVector3& operator*=(lcVector3& a, float b) { a.x *= b; a.y *= b; a.z *= b; return a; } inline lcVector3& operator/=(lcVector3& a, float b) { a.x /= b; a.y /= b; a.z /= b; return a; } inline bool operator==(const lcVector3& a, const lcVector3& b) { return a.x == b.x && a.y == b.y && a.z == b.z; } inline bool operator!=(const lcVector3& a, const lcVector3& b) { return a.x != b.x || a.y != b.y || a.z != b.z; } #ifndef QT_NO_DEBUG inline QDebug operator<<(QDebug Debug, const lcVector2& v) { QDebugStateSaver Saver(Debug); Debug.nospace() << '(' << v.x << ", " << v.y << ')'; return Debug; } inline QDebug operator<<(QDebug Debug, const lcVector3& v) { QDebugStateSaver Saver(Debug); Debug.nospace() << '(' << v.x << ", " << v.y << ", " << v.z << ')'; return Debug; } inline QDebug operator<<(QDebug Debug, const lcVector4& v) { QDebugStateSaver Saver(Debug); Debug.nospace() << '(' << v.x << ", " << v.y << ", " << v.z << ", " << v.w << ')'; return Debug; } inline QDebug operator<<(QDebug Debug, const lcMatrix33& m) { QDebugStateSaver Saver(Debug); Debug.nospace() << '[' << m[0] << ", " << m[1] << ", " << m[2] << ']'; return Debug; } inline QDebug operator<<(QDebug Debug, const lcMatrix44& m) { QDebugStateSaver Saver(Debug); Debug.nospace() << '[' << m[0] << ", " << m[1] << ", " << m[2] << ", " << m[3] << ']'; return Debug; } #endif inline QDataStream& operator<<(QDataStream& Stream, const lcVector3& v) { Stream << v.x << v.y << v.z; return Stream; } inline QDataStream& operator>>(QDataStream& Stream, lcVector3& v) { Stream >> v.x >> v.y >> v.z; return Stream; } inline QDataStream& operator<<(QDataStream& Stream, const lcVector4& v) { Stream << v.x << v.y << v.z << v.w; return Stream; } inline QDataStream& operator >> (QDataStream& Stream, lcVector4& v) { Stream >> v.x >> v.y >> v.z >> v.w; return Stream; } inline void lcVector3::Normalize() { const float InvLength = 1.0f / Length(); x *= InvLength; y *= InvLength; z *= InvLength; } inline float lcVector3::Length() const { return sqrtf(x * x + y * y + z * z); } inline float lcVector3::LengthSquared() const { return x * x + y * y + z * z; } inline float lcLength(const lcVector3& a) { return a.Length(); } inline float lcLengthSquared(const lcVector3& a) { return a.LengthSquared(); } inline lcVector3 lcNormalize(const lcVector3& a) { lcVector3 Ret(a); Ret.Normalize(); return Ret; } inline float lcDot(const lcVector3& a, const lcVector3& b) { return a.x * b.x + a.y * b.y + a.z * b.z; } inline float lcDot3(const lcVector4& a, const lcVector3& b) { return a.x * b.x + a.y * b.y + a.z * b.z; } inline float lcDot3(const lcVector3& a, const lcVector4& b) { return a.x * b.x + a.y * b.y + a.z * b.z; } inline float lcDot3(const lcVector4& a, const lcVector4& b) { return a.x * b.x + a.y * b.y + a.z * b.z; } inline float lcDot(const lcVector4& a, const lcVector4& b) { return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w; } inline lcVector3 lcCross(const lcVector3& a, const lcVector3& b) { return lcVector3(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x); } template<> inline lcVector3 lcMin<lcVector3>(const lcVector3& a, const lcVector3& b) { return lcVector3(a.x < b.x ? a.x : b.x, a.y < b.y ? a.y : b.y, a.z < b.z ? a.z : b.z); } template<> inline lcVector3 lcMax<lcVector3>(const lcVector3& a, const lcVector3& b) { return lcVector3(a.x > b.x ? a.x : b.x, a.y > b.y ? a.y : b.y, a.z > b.z ? a.z : b.z); } inline lcVector4 operator+(const lcVector4& a, const lcVector4& b) { return lcVector4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w); } inline lcVector4 operator-(const lcVector4& a, const lcVector4& b) { return lcVector4(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w); } inline lcVector4 operator*(const lcVector4& a, float f) { return lcVector4(a.x * f, a.y * f, a.z * f, a.w * f); } inline lcVector4 operator*(const lcVector4& a, const lcVector4& b) { return lcVector4(a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w); } inline lcVector4 operator/(const lcVector4& a, float f) { return lcVector4(a.x / f, a.y / f, a.z / f, a.w / f); } inline lcVector4 operator/(const lcVector4& a, const lcVector4& b) { return lcVector4(a.x / b.x, a.y / b.y, a.z / b.z, a.w / b.w); } inline lcVector4& operator+=(lcVector4& a, const lcVector4& b) { a.x += b.x; a.y += b.y; a.z += b.z; a.w += b.w; return a; } inline lcVector4& operator-=(lcVector4& a, const lcVector4& b) { a.x -= b.x; a.y -= b.y; a.z -= b.z; a.w -= b.w; return a; } inline lcVector4& operator*=(lcVector4& a, float b) { a.x *= b; a.y *= b; a.z *= b; a.w *= b; return a; } inline lcVector4& operator/=(lcVector4& a, float b) { a.x /= b; a.y /= b; a.z /= b; a.w /= b; return a; } inline quint32 lcPackNormal(const lcVector3& Normal) { quint32 Packed = 0; Packed |= (((qint8)(Normal.x * 127.0f)) & 0xff) << 0; Packed |= (((qint8)(Normal.y * 127.0f)) & 0xff) << 8; Packed |= (((qint8)(Normal.z * 127.0f)) & 0xff) << 16; return Packed; } inline lcVector3 lcUnpackNormal(quint32 Packed) { lcVector3 Normal; Normal.x = (float)(qint8)((Packed >> 0) & 0xff) / 127.0f; Normal.y = (float)(qint8)((Packed >> 8) & 0xff) / 127.0f; Normal.z = (float)(qint8)((Packed >> 16) & 0xff) / 127.0f; return Normal; } inline lcVector3 lcVector3LDrawToLeoCAD(const lcVector3& Vector) { return lcVector3(Vector[0], Vector[2], -Vector[1]); } inline lcVector3 lcVector3FromColor(quint32 Color) { lcVector3 v(LC_RGBA_RED(Color), LC_RGBA_GREEN(Color), LC_RGBA_BLUE(Color)); v /= 255.0f; return v; } inline lcVector3 lcVector3FromQColor(QColor Color) { return lcVector3(Color.redF(), Color.greenF(), Color.blueF()); } inline lcVector4 lcVector4FromColor(quint32 Color) { lcVector4 v(LC_RGBA_RED(Color), LC_RGBA_GREEN(Color), LC_RGBA_BLUE(Color), LC_RGBA_ALPHA(Color)); v /= 255.0f; return v; } inline quint32 lcColorFromVector3(const lcVector3& Color) { return LC_RGB(roundf(Color[0] * 255), roundf(Color[1] * 255), roundf(Color[2] * 255)); } inline QColor lcQColorFromVector3(const lcVector3& Color) { return QColor::fromRgb(roundf(Color[0] * 255), roundf(Color[1] * 255), roundf(Color[2] * 255)); } inline float lcLuminescence(const lcVector3& Color) { return 0.2126f * Color[0] + 0.7152f * Color[1] + 0.0722f * Color[2]; } inline lcVector3 lcSRGBToLinear(const lcVector3& Color) { const float r = LC_SRGB_TO_LINEAR(Color[0]); const float g = LC_SRGB_TO_LINEAR(Color[1]); const float b = LC_SRGB_TO_LINEAR(Color[2]); return lcVector3(r, g, b); } inline lcVector3 lcLinearToSRGB(const lcVector3& Color) { const float r = LC_LINEAR_TO_SRGB(Color[0]); const float g = LC_LINEAR_TO_SRGB(Color[1]); const float b = LC_LINEAR_TO_SRGB(Color[2]); return lcVector3(r, g, b); } inline lcVector3 lcMul(const lcVector3& a, const lcMatrix33& b) { return b.r[0] * a[0] + b.r[1] * a[1] + b.r[2] * a[2]; } inline lcVector3 lcMul31(const lcVector3& a, const lcMatrix44& b) { lcVector4 v = b.r[0] * a[0] + b.r[1] * a[1] + b.r[2] * a[2] + b.r[3]; return lcVector3(v[0], v[1], v[2]); } inline lcVector3 lcMul31(const lcVector4& a, const lcMatrix44& b) { lcVector4 v = b.r[0] * a[0] + b.r[1] * a[1] + b.r[2] * a[2] + b.r[3]; return lcVector3(v[0], v[1], v[2]); } inline lcVector3 lcMul30(const lcVector3& a, const lcMatrix44& b) { lcVector4 v = b.r[0] * a[0] + b.r[1] * a[1] + b.r[2] * a[2]; return lcVector3(v[0], v[1], v[2]); } inline lcVector3 lcMul30(const lcVector4& a, const lcMatrix44& b) { lcVector4 v = b.r[0] * a[0] + b.r[1] * a[1] + b.r[2] * a[2]; return lcVector3(v[0], v[1], v[2]); } inline lcVector4 lcMul4(const lcVector4& a, const lcMatrix44& b) { return b.r[0] * a[0] + b.r[1] * a[1] + b.r[2] * a[2] + b.r[3] * a[3]; } inline lcMatrix33 lcMul(const lcMatrix33& a, const lcMatrix33& b) { const lcVector3 Col0(b.r[0][0], b.r[1][0], b.r[2][0]); const lcVector3 Col1(b.r[0][1], b.r[1][1], b.r[2][1]); const lcVector3 Col2(b.r[0][2], b.r[1][2], b.r[2][2]); const lcVector3 Ret0(lcDot(a.r[0], Col0), lcDot(a.r[0], Col1), lcDot(a.r[0], Col2)); const lcVector3 Ret1(lcDot(a.r[1], Col0), lcDot(a.r[1], Col1), lcDot(a.r[1], Col2)); const lcVector3 Ret2(lcDot(a.r[2], Col0), lcDot(a.r[2], Col1), lcDot(a.r[2], Col2)); return lcMatrix33(Ret0, Ret1, Ret2); } inline lcMatrix44 lcMul(const lcMatrix44& a, const lcMatrix44& b) { lcMatrix44 Result; Result.r[0] = b.r[0] * a[0].x + b.r[1] * a[0].y + b.r[2] * a[0].z + b.r[3] * a[0].w; Result.r[1] = b.r[0] * a[1].x + b.r[1] * a[1].y + b.r[2] * a[1].z + b.r[3] * a[1].w; Result.r[2] = b.r[0] * a[2].x + b.r[1] * a[2].y + b.r[2] * a[2].z + b.r[3] * a[2].w; Result.r[3] = b.r[0] * a[3].x + b.r[1] * a[3].y + b.r[2] * a[3].z + b.r[3] * a[3].w; return Result; } inline lcMatrix33::lcMatrix33(const lcMatrix44& Matrix) { r[0] = lcVector3(Matrix.r[0].x, Matrix.r[0].y, Matrix.r[0].z); r[1] = lcVector3(Matrix.r[1].x, Matrix.r[1].y, Matrix.r[1].z); r[2] = lcVector3(Matrix.r[2].x, Matrix.r[2].y, Matrix.r[2].z); } inline void lcMatrix33::Orthonormalize() { r[0] = lcNormalize(r[0]); r[1] = lcNormalize(r[1] - lcDot(r[1], r[0]) * r[0]); r[2] = r[2] - lcDot(r[2], r[0]) * r[0]; r[2] -= lcDot(r[2], r[1]) * r[1]; r[2] = lcNormalize(r[2]); } inline lcMatrix33 lcMatrix33Identity() { lcMatrix33 m; m.r[0] = lcVector3(1.0f, 0.0f, 0.0f); m.r[1] = lcVector3(0.0f, 1.0f, 0.0f); m.r[2] = lcVector3(0.0f, 0.0f, 1.0f); return m; } inline lcMatrix33 lcMatrix33Scale(const lcVector3& Scale) { lcMatrix33 m; m.r[0] = lcVector3(Scale.x, 0.0f, 0.0f); m.r[1] = lcVector3(0.0f, Scale.y, 0.0f); m.r[2] = lcVector3(0.0f, 0.0f, Scale.z); return m; } inline lcMatrix33 lcMatrix33RotationX(const float Radians) { float s, c; s = sinf(Radians); c = cosf(Radians); lcMatrix33 m; m.r[0] = lcVector3(1.0f, 0.0f, 0.0f); m.r[1] = lcVector3(0.0f, c, s); m.r[2] = lcVector3(0.0f, -s, c); return m; } inline lcMatrix33 lcMatrix33RotationY(const float Radians) { float s, c; s = sinf(Radians); c = cosf(Radians); lcMatrix33 m; m.r[0] = lcVector3( c, 0.0f, -s); m.r[1] = lcVector3(0.0f, 1.0f, 0.0f); m.r[2] = lcVector3( s, 0.0f, c); return m; } inline lcMatrix33 lcMatrix33RotationZ(const float Radians) { float s = sinf(Radians); float c = cosf(Radians); lcMatrix33 m; m.r[0] = lcVector3( c, s, 0.0f); m.r[1] = lcVector3( -s, c, 0.0f); m.r[2] = lcVector3(0.0f, 0.0f, 1.0f); return m; } inline lcMatrix33 lcMatrix33FromAxisAngle(const lcVector3& Axis, const float Radians) { float s = sinf(Radians); float c = cosf(Radians); float mag = Axis.Length(); if (mag == 0.0f) return lcMatrix33Identity(); lcVector3 Normal = Axis * (1.0f / mag); float xx = Normal[0] * Normal[0]; float yy = Normal[1] * Normal[1]; float zz = Normal[2] * Normal[2]; float xy = Normal[0] * Normal[1]; float yz = Normal[1] * Normal[2]; float zx = Normal[2] * Normal[0]; float xs = Normal[0] * s; float ys = Normal[1] * s; float zs = Normal[2] * s; float one_c = 1.0f - c; lcMatrix33 m; m.r[0] = lcVector3((one_c * xx) + c, (one_c * xy) + zs, (one_c * zx) - ys); m.r[1] = lcVector3((one_c * xy) - zs, (one_c * yy) + c, (one_c * yz) + xs); m.r[2] = lcVector3((one_c * zx) + ys, (one_c * yz) - xs, (one_c * zz) + c); return m; } inline lcMatrix33 lcMatrix33Transpose(const lcMatrix33& m) { lcMatrix33 t; t.r[0] = lcVector3(m[0][0], m[1][0], m[2][0]); t.r[1] = lcVector3(m[0][1], m[1][1], m[2][1]); t.r[2] = lcVector3(m[0][2], m[1][2], m[2][2]); return t; } inline lcMatrix33 lcMatrix33AffineInverse(const lcMatrix33& m) { lcMatrix33 Inv; Inv.r[0] = lcVector3(m.r[0][0], m.r[1][0], m.r[2][0]); Inv.r[1] = lcVector3(m.r[0][1], m.r[1][1], m.r[2][1]); Inv.r[2] = lcVector3(m.r[0][2], m.r[1][2], m.r[2][2]); return Inv; } inline lcMatrix33 lcMatrix33FromEulerAngles(const lcVector3& Radians) { float CosYaw, SinYaw, CosPitch, SinPitch, CosRoll, SinRoll; CosRoll = cosf(Radians[0]); SinRoll = sinf(Radians[0]); CosPitch = cosf(Radians[1]); SinPitch = sinf(Radians[1]); CosYaw = cosf(Radians[2]); SinYaw = sinf(Radians[2]); lcMatrix33 m; m.r[0] = lcVector3(CosYaw * CosPitch, SinYaw * CosPitch, -SinPitch); m.r[1] = lcVector3(CosYaw * SinPitch * SinRoll - SinYaw * CosRoll, CosYaw * CosRoll + SinYaw * SinPitch * SinRoll, CosPitch * SinRoll); m.r[2] = lcVector3(CosYaw * SinPitch * CosRoll + SinYaw * SinRoll, SinYaw * SinPitch * CosRoll - CosYaw * SinRoll, CosPitch * CosRoll); return m; } inline lcVector3 lcMatrix33ToEulerAngles(const lcMatrix33& RotMat) { float SinPitch, CosPitch, SinRoll, CosRoll, SinYaw, CosYaw; SinPitch = -RotMat.r[0][2]; CosPitch = sqrtf(1 - SinPitch*SinPitch); if (fabsf(CosPitch) > 0.0005f) { SinRoll = RotMat.r[1][2] / CosPitch; CosRoll = RotMat.r[2][2] / CosPitch; SinYaw = RotMat.r[0][1] / CosPitch; CosYaw = RotMat.r[0][0] / CosPitch; } else { SinRoll = -RotMat.r[2][1]; CosRoll = RotMat.r[1][1]; SinYaw = 0.0f; CosYaw = 1.0f; } lcVector3 Rot(atan2f(SinRoll, CosRoll), atan2f(SinPitch, CosPitch), atan2f(SinYaw, CosYaw)); if (Rot[0] < 0) Rot[0] += LC_2PI; if (Rot[1] < 0) Rot[1] += LC_2PI; if (Rot[2] < 0) Rot[2] += LC_2PI; return Rot; } inline float lcMatrix44::Determinant() const { return r[0][0] * r[1][1] * r[2][2] + r[0][1] * r[1][2] * r[2][0] + r[0][2] * r[1][0] * r[2][1] - r[0][0] * r[1][2] * r[2][1] - r[0][1] * r[1][0] * r[2][2] - r[0][2] * r[1][1] * r[2][0]; } inline lcMatrix44 lcMatrix44Identity() { lcMatrix44 m; m.r[0] = lcVector4(1.0f, 0.0f, 0.0f, 0.0f); m.r[1] = lcVector4(0.0f, 1.0f, 0.0f, 0.0f); m.r[2] = lcVector4(0.0f, 0.0f, 1.0f, 0.0f); m.r[3] = lcVector4(0.0f, 0.0f, 0.0f, 1.0f); return m; } inline lcMatrix44 lcMatrix44Translation(const lcVector3& Translation) { lcMatrix44 m; m.r[0] = lcVector4(1.0f, 0.0f, 0.0f, 0.0f); m.r[1] = lcVector4(0.0f, 1.0f, 0.0f, 0.0f); m.r[2] = lcVector4(0.0f, 0.0f, 1.0f, 0.0f); m.r[3] = lcVector4(Translation[0], Translation[1], Translation[2], 1.0f); return m; } inline lcMatrix44 lcMatrix44RotationX(const float Radians) { float s, c; s = sinf(Radians); c = cosf(Radians); lcMatrix44 m; m.r[0] = lcVector4(1.0f, 0.0f, 0.0f, 0.0f); m.r[1] = lcVector4(0.0f, c, s, 0.0f); m.r[2] = lcVector4(0.0f, -s, c, 0.0f); m.r[3] = lcVector4(0.0f, 0.0f, 0.0f, 1.0f); return m; } inline lcMatrix44 lcMatrix44RotationY(const float Radians) { float s, c; s = sinf(Radians); c = cosf(Radians); lcMatrix44 m; m.r[0] = lcVector4( c, 0.0f, -s, 0.0f); m.r[1] = lcVector4(0.0f, 1.0f, 0.0f, 0.0f); m.r[2] = lcVector4( s, 0.0f, c, 0.0f); m.r[3] = lcVector4(0.0f, 0.0f, 0.0f, 1.0f); return m; } inline lcMatrix44 lcMatrix44RotationZ(const float Radians) { float s, c; s = sinf(Radians); c = cosf(Radians); lcMatrix44 m; m.r[0] = lcVector4( c, s, 0.0f, 0.0f); m.r[1] = lcVector4( -s, c, 0.0f, 0.0f); m.r[2] = lcVector4(0.0f, 0.0f, 1.0f, 0.0f); m.r[3] = lcVector4(0.0f, 0.0f, 0.0f, 1.0f); return m; } inline lcMatrix44 lcMatrix44Scale(const lcVector3& Scale) { lcMatrix44 m; m.r[0] = lcVector4(Scale.x, 0.0f, 0.0f, 0.0f); m.r[1] = lcVector4(0.0f, Scale.y, 0.0f, 0.0f); m.r[2] = lcVector4(0.0f, 0.0f, Scale.z, 0.0f); m.r[3] = lcVector4(0.0f, 0.0f, 0.0f, 1.0f); return m; } inline lcMatrix44 lcMatrix44LookAt(const lcVector3& Eye, const lcVector3& Target, const lcVector3& Up) { lcVector3 x, y, z; z = lcNormalize(Eye - Target); x = lcNormalize(lcCross(Up, z)); y = lcNormalize(lcCross(z, x)); lcMatrix44 m; m.r[0] = lcVector4(x[0], y[0], z[0], 0.0f); m.r[1] = lcVector4(x[1], y[1], z[1], 0.0f); m.r[2] = lcVector4(x[2], y[2], z[2], 0.0f); m.r[3] = m.r[0] * -Eye[0] + m.r[1] * -Eye[1] + m.r[2] * -Eye[2]; m.r[3][3] = 1.0f; return m; } inline lcMatrix44 lcMatrix44Frustum(float Left, float Right, float Bottom, float Top, float Near, float Far) { if ((Near <= 0.0f) || (Far <= 0.0f) || (Near == Far) || (Left == Right) || (Top == Bottom)) return lcMatrix44Identity(); float x, y, a, b, c, d; x = (2.0f * Near) / (Right - Left); y = (2.0f * Near) / (Top - Bottom); a = (Right + Left) / (Right - Left); b = (Top + Bottom) / (Top - Bottom); c = -(Far + Near) / (Far - Near); d = -(2.0f * Far * Near) / (Far - Near); lcMatrix44 m; m.r[0] = lcVector4(x, 0, 0, 0); m.r[1] = lcVector4(0, y, 0, 0); m.r[2] = lcVector4(a, b, c, -1); m.r[3] = lcVector4(0, 0, d, 0); return m; } inline lcMatrix44 lcMatrix44Perspective(float FoVy, float Aspect, float Near, float Far) { float Left, Right, Bottom, Top; Top = Near * (float)tan(FoVy * LC_PI / 360.0f); Bottom = -Top; Left = Bottom * Aspect; Right = Top * Aspect; return lcMatrix44Frustum(Left, Right, Bottom, Top, Near, Far); } inline lcMatrix44 lcMatrix44Ortho(float Left, float Right, float Bottom, float Top, float Near, float Far) { lcMatrix44 m; m.r[0] = lcVector4(2.0f / (Right-Left), 0.0f, 0.0f, 0.0f), m.r[1] = lcVector4(0.0f, 2.0f / (Top-Bottom), 0.0f, 0.0f), m.r[2] = lcVector4(0.0f, 0.0f, -2.0f / (Far-Near), 0.0f), m.r[3] = lcVector4(-(Right+Left) / (Right-Left), -(Top+Bottom) / (Top-Bottom), -(Far+Near) / (Far-Near), 1.0f); return m; } inline lcMatrix44 lcMatrix44FromAxisAngle(const lcVector3& Axis, const float Radians) { float s, c, mag, xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c; s = sinf(Radians); c = cosf(Radians); mag = Axis.Length(); if (mag == 0.0f) return lcMatrix44Identity(); lcVector3 Normal = Axis * (1.0f / mag); xx = Normal[0] * Normal[0]; yy = Normal[1] * Normal[1]; zz = Normal[2] * Normal[2]; xy = Normal[0] * Normal[1]; yz = Normal[1] * Normal[2]; zx = Normal[2] * Normal[0]; xs = Normal[0] * s; ys = Normal[1] * s; zs = Normal[2] * s; one_c = 1.0f - c; lcMatrix44 m; m.r[0] = lcVector4((one_c * xx) + c, (one_c * xy) + zs, (one_c * zx) - ys, 0.0f); m.r[1] = lcVector4((one_c * xy) - zs, (one_c * yy) + c, (one_c * yz) + xs, 0.0f); m.r[2] = lcVector4((one_c * zx) + ys, (one_c * yz) - xs, (one_c * zz) + c, 0.0f); m.r[3] = lcVector4(0.0f, 0.0f, 0.0f, 1.0f); return m; } inline lcVector4 lcMatrix44ToAxisAngle(const lcMatrix44& m) { lcVector3 Rows[3]; Rows[0] = lcNormalize(lcVector3(m.r[0][0], m.r[0][1], m.r[0][2])); Rows[1] = lcNormalize(lcVector3(m.r[1][0], m.r[1][1], m.r[1][2])); Rows[2] = lcNormalize(lcVector3(m.r[2][0], m.r[2][1], m.r[2][2])); if (m.Determinant() < 0.0f) Rows[0] *= -1.0f; const float Trace = Rows[0][0] + Rows[1][1] + Rows[2][2]; const float Cos = 0.5f * (Trace - 1.0f); lcVector4 rot; rot[3] = acosf(lcClamp(Cos, -1.0f, 1.0f)); // in [0,PI] if (rot[3] > 0.01f) { if (fabsf(LC_PI - rot[3]) > 0.01f) { rot[0] = Rows[1][2] - Rows[2][1]; rot[1] = Rows[2][0] - Rows[0][2]; rot[2] = Rows[0][1] - Rows[1][0]; float inv = 1.0f / sqrtf(rot[0]*rot[0] + rot[1]*rot[1] + rot[2]*rot[2]); rot[0] *= inv; rot[1] *= inv; rot[2] *= inv; } else { // angle is PI float HalfInverse; if (Rows[0][0] >= Rows[1][1]) { // r00 >= r11 if (Rows[0][0] >= Rows[2][2]) { // r00 is maximum diagonal term rot[0] = 0.5f * sqrtf(Rows[0][0] - Rows[1][1] - Rows[2][2] + 1.0f); HalfInverse = 0.5f / rot[0]; rot[1] = HalfInverse * Rows[1][0]; rot[2] = HalfInverse * Rows[2][0]; } else { // r22 is maximum diagonal term rot[2] = 0.5f * sqrtf(Rows[2][2] - Rows[0][0] - Rows[1][1] + 1.0f); HalfInverse = 0.5f / rot[2]; rot[0] = HalfInverse * Rows[2][0]; rot[1] = HalfInverse * Rows[2][1]; } } else { // r11 > r00 if (Rows[1][1] >= Rows[2][2]) { // r11 is maximum diagonal term rot[1] = 0.5f * sqrtf(Rows[1][1] - Rows[0][0] - Rows[2][2] + 1.0f); HalfInverse = 0.5f / rot[1]; rot[0] = HalfInverse * Rows[1][0]; rot[2] = HalfInverse * Rows[2][1]; } else { // r22 is maximum diagonal term rot[2] = 0.5f * sqrtf(Rows[2][2] - Rows[0][0] - Rows[1][1] + 1.0f); HalfInverse = 0.5f / rot[2]; rot[0] = HalfInverse * Rows[2][0]; rot[1] = HalfInverse * Rows[2][1]; } } } } else { // The angle is 0 and the matrix is the identity. rot[0] = 0.0f; rot[1] = 0.0f; rot[2] = 1.0f; } return rot; } inline lcMatrix44 lcMatrix44FromEulerAngles(const lcVector3& Radians) { float CosYaw, SinYaw, CosPitch, SinPitch, CosRoll, SinRoll; CosRoll = cosf(Radians[0]); SinRoll = sinf(Radians[0]); CosPitch = cosf(Radians[1]); SinPitch = sinf(Radians[1]); CosYaw = cosf(Radians[2]); SinYaw = sinf(Radians[2]); lcMatrix44 m; m.r[0] = lcVector4(CosYaw * CosPitch, SinYaw * CosPitch, -SinPitch, 0.0f); m.r[1] = lcVector4(CosYaw * SinPitch * SinRoll - SinYaw * CosRoll, CosYaw * CosRoll + SinYaw * SinPitch * SinRoll, CosPitch * SinRoll, 0.0f); m.r[2] = lcVector4(CosYaw * SinPitch * CosRoll + SinYaw * SinRoll, SinYaw * SinPitch * CosRoll - CosYaw * SinRoll, CosPitch * CosRoll, 0.0f); m.r[3] = lcVector4(0.0f, 0.0f, 0.0f, 1.0f); return m; } inline lcVector3 lcMatrix44ToEulerAngles(const lcMatrix44& RotMat) { float SinPitch, CosPitch, SinRoll, CosRoll, SinYaw, CosYaw; SinPitch = -RotMat.r[0][2]; CosPitch = sqrtf(1 - SinPitch*SinPitch); if (fabsf(CosPitch) > 0.0005f) { SinRoll = RotMat.r[1][2] / CosPitch; CosRoll = RotMat.r[2][2] / CosPitch; SinYaw = RotMat.r[0][1] / CosPitch; CosYaw = RotMat.r[0][0] / CosPitch; } else { SinRoll = -RotMat.r[2][1]; CosRoll = RotMat.r[1][1]; SinYaw = 0.0f; CosYaw = 1.0f; } lcVector3 Rot(atan2f(SinRoll, CosRoll), atan2f(SinPitch, CosPitch), atan2f(SinYaw, CosYaw)); if (Rot[0] < 0) Rot[0] += LC_2PI; if (Rot[1] < 0) Rot[1] += LC_2PI; if (Rot[2] < 0) Rot[2] += LC_2PI; return Rot; } inline lcMatrix44 lcMatrix44Transpose(const lcMatrix44& m) { lcMatrix44 t; t.r[0] = lcVector4(m[0][0], m[1][0], m[2][0], m[3][0]); t.r[1] = lcVector4(m[0][1], m[1][1], m[2][1], m[3][1]); t.r[2] = lcVector4(m[0][2], m[1][2], m[2][2], m[3][2]); t.r[3] = lcVector4(m[0][3], m[1][3], m[2][3], m[3][3]); return t; } inline lcMatrix44 lcMatrix44AffineInverse(const lcMatrix44& m) { lcMatrix44 Inv; Inv.r[0] = lcVector4(m.r[0][0], m.r[1][0], m.r[2][0], m.r[0][3]); Inv.r[1] = lcVector4(m.r[0][1], m.r[1][1], m.r[2][1], m.r[1][3]); Inv.r[2] = lcVector4(m.r[0][2], m.r[1][2], m.r[2][2], m.r[2][3]); lcVector3 Trans = -lcMul30(m.r[3], Inv); Inv.r[3] = lcVector4(Trans[0], Trans[1], Trans[2], 1.0f); return Inv; } // Inverse code from the GLU library. inline lcMatrix44 lcMatrix44Inverse(const lcMatrix44& m) { #define SWAP_ROWS(a, b) { float *_tmp = a; (a)=(b); (b)=_tmp; } #define MAT(m,col,row) m.r[row][col] float wtmp[4][8]; float m0, m1, m2, m3, s; float *r0, *r1, *r2, *r3; r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1), r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3), r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1), r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3), r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1), r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3), r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1), r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3), r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; // choose pivot - or die if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2); if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1); if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0); // if (0.0 == r0[0]) return GL_FALSE; // eliminate first variable m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0]; s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s; s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s; s = r0[4]; if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; } s = r0[5]; if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; } s = r0[6]; if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; } s = r0[7]; if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } // choose pivot - or die if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2); if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1); // if (0.0 == r1[1]) return GL_FALSE; // eliminate second variable m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1]; r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2]; r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3]; s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; } s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; } s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; } s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } // choose pivot - or die if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2); // if (0.0 == r2[2]) return GL_FALSE; // eliminate third variable m3 = r3[2]/r2[2]; r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], r3[7] -= m3 * r2[7]; // last check // if (0.0 == r3[3]) return GL_FALSE; s = 1.0f/r3[3]; // now back substitute row 3 r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; m2 = r2[3]; // now back substitute row 2 s = 1.0f/r2[2]; r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); m1 = r1[3]; r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; m0 = r0[3]; r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; m1 = r1[2]; // now back substitute row 1 s = 1.0f/r1[1]; r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); m0 = r0[2]; r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; m0 = r0[1]; // now back substitute row 0 s = 1.0f/r0[0]; r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); const lcVector4 Row0(r0[4], r1[4], r2[4], r3[4]); const lcVector4 Row1(r0[5], r1[5], r2[5], r3[5]); const lcVector4 Row2(r0[6], r1[6], r2[6], r3[6]); const lcVector4 Row3(r0[7], r1[7], r2[7], r3[7]); lcMatrix44 out(Row0, Row1, Row2, Row3); return out; #undef MAT #undef SWAP_ROWS } inline lcMatrix44 lcMatrix44LeoCADToLDraw(const lcMatrix44& Matrix) { lcMatrix44 m; m.r[0] = lcVector4(Matrix[0][0], -Matrix[2][0], Matrix[1][0], 0.0f); m.r[1] = lcVector4(-Matrix[0][2], Matrix[2][2], -Matrix[1][2], 0.0f); m.r[2] = lcVector4(Matrix[0][1], -Matrix[2][1], Matrix[1][1], 0.0f); m.r[3] = lcVector4(Matrix[3][0], -Matrix[3][2], Matrix[3][1], 1.0f); return m; } inline lcMatrix44 lcMatrix44LDrawToLeoCAD(const lcMatrix44& Matrix) { lcMatrix44 m; m.r[0] = lcVector4(Matrix[0][0], Matrix[0][2], -Matrix[0][1], 0.0f); m.r[1] = lcVector4(Matrix[2][0], Matrix[2][2], -Matrix[2][1], 0.0f); m.r[2] = lcVector4(-Matrix[1][0], -Matrix[1][2], Matrix[1][1], 0.0f); m.r[3] = lcVector4(Matrix[3][0], Matrix[3][2], -Matrix[3][1], 1.0f); return m; } inline lcVector4 lcQuaternionRotationX(float Radians) { return lcVector4(sinf(Radians / 2.0f), 0, 0, cosf(Radians / 2.0f)); } inline lcVector4 lcQuaternionRotationY(float Radians) { return lcVector4(0, sinf(Radians / 2.0f), 0, cosf(Radians / 2.0f)); } inline lcVector4 lcQuaternionRotationZ(float Radians) { return lcVector4(0, 0, sinf(Radians / 2.0f), cosf(Radians / 2.0f)); } inline lcVector4 lcQuaternionFromAxisAngle(const lcVector4& a) { const float s = sinf(a[3] / 2.0f); return lcVector4(a[0] * s, a[1] * s, a[2] * s, cosf(a[3] / 2.0f)); } inline lcVector4 lcQuaternionToAxisAngle(const lcVector4& a) { const float Len = lcDot3(a, a); if (Len > 0.00001f) { const float f = 1.0f / sqrtf(Len); return lcVector4(a[0] * f, a[1] * f, a[2] * f, acosf(a[3]) * 2.0f); } else { return lcVector4(0, 0, 1, 0); } } inline lcVector4 lcQuaternionMultiply(const lcVector4& a, const lcVector4& b) { const float x = a[0] * b[3] + a[1] * b[2] - a[2] * b[1] + a[3] * b[0]; const float y = -a[0] * b[2] + a[1] * b[3] + a[2] * b[0] + a[3] * b[1]; const float z = a[0] * b[1] - a[1] * b[0] + a[2] * b[3] + a[3] * b[2]; const float w = -a[0] * b[0] - a[1] * b[1] - a[2] * b[2] + a[3] * b[3]; return lcVector4(x, y, z, w); } inline lcVector3 lcQuaternionMul(const lcVector3& a, const lcVector4& b) { // Faster to transform to a matrix and multiply. const float Tx = 2.0f*b[0]; const float Ty = 2.0f*b[1]; const float Tz = 2.0f*b[2]; const float Twx = Tx*b[3]; const float Twy = Ty*b[3]; const float Twz = Tz*b[3]; const float Txx = Tx*b[0]; const float Txy = Ty*b[0]; const float Txz = Tz*b[0]; const float Tyy = Ty*b[1]; const float Tyz = Tz*b[1]; const float Tzz = Tz*b[2]; lcVector3 Rows[3]; Rows[0] = lcVector3(1.0f-(Tyy+Tzz), Txy+Twz, Txz-Twy); Rows[1] = lcVector3(Txy-Twz, 1.0f-(Txx+Tzz), Tyz+Twx); Rows[2] = lcVector3(Txz+Twy, Tyz-Twx, 1.0f-(Txx+Tyy)); return lcVector3(Rows[0]*a[0] + Rows[1]*a[1] + Rows[2]*a[2]); } // Convert world coordinates to screen coordinates. inline lcVector3 lcProjectPoint(const lcVector3& Point, const lcMatrix44& ModelView, const lcMatrix44& Projection, const int Viewport[4]) { lcVector4 Tmp; Tmp = lcMul4(lcVector4(Point[0], Point[1], Point[2], 1.0f), ModelView); Tmp = lcMul4(Tmp, Projection); // Normalize. Tmp /= Tmp[3]; // Screen coordinates. return lcVector3(Viewport[0] + (1 + Tmp[0]) * Viewport[2] / 2, Viewport[1] + (1 + Tmp[1]) * Viewport[3] / 2, (1 + Tmp[2]) / 2); } inline lcVector3 lcUnprojectPoint(const lcVector3& Point, const lcMatrix44& ModelView, const lcMatrix44& Projection, const int Viewport[4]) { // Calculate the screen to model transform. const lcMatrix44 Transform = lcMatrix44Inverse(lcMul(ModelView, Projection)); lcVector4 Tmp; // Convert the point to homogeneous coordinates. Tmp[0] = (Point[0] - Viewport[0]) * 2.0f / Viewport[2] - 1.0f; Tmp[1] = (Point[1] - Viewport[1]) * 2.0f / Viewport[3] - 1.0f; Tmp[2] = Point[2] * 2.0f - 1.0f; Tmp[3] = 1.0f; Tmp = lcMul4(Tmp, Transform); if (Tmp[3] != 0.0f) Tmp /= Tmp[3]; return lcVector3(Tmp[0], Tmp[1], Tmp[2]); } inline void lcUnprojectPoints(lcVector3* Points, int NumPoints, const lcMatrix44& ModelView, const lcMatrix44& Projection, const int Viewport[4]) { // Calculate the screen to model transform. const lcMatrix44 Transform = lcMatrix44Inverse(lcMul(ModelView, Projection)); for (int i = 0; i < NumPoints; i++) { lcVector4 Tmp; // Convert the point to homogeneous coordinates. Tmp[0] = (Points[i][0] - Viewport[0]) * 2.0f / Viewport[2] - 1.0f; Tmp[1] = (Points[i][1] - Viewport[1]) * 2.0f / Viewport[3] - 1.0f; Tmp[2] = Points[i][2] * 2.0f - 1.0f; Tmp[3] = 1.0f; Tmp = lcMul4(Tmp, Transform); if (Tmp[3] != 0.0f) Tmp /= Tmp[3]; Points[i] = lcVector3(Tmp[0], Tmp[1], Tmp[2]); } } inline void lcGetFrustumPlanes(const lcMatrix44& WorldView, const lcMatrix44& Projection, lcVector4 Planes[6]) { lcMatrix44 WorldProj = lcMul(WorldView, Projection); Planes[0][0] = (WorldProj[0][0] - WorldProj[0][3]) * -1; Planes[0][1] = (WorldProj[1][0] - WorldProj[1][3]) * -1; Planes[0][2] = (WorldProj[2][0] - WorldProj[2][3]) * -1; Planes[0][3] = (WorldProj[3][0] - WorldProj[3][3]) * -1; Planes[1][0] = WorldProj[0][0] + WorldProj[0][3]; Planes[1][1] = WorldProj[1][0] + WorldProj[1][3]; Planes[1][2] = WorldProj[2][0] + WorldProj[2][3]; Planes[1][3] = WorldProj[3][0] + WorldProj[3][3]; Planes[2][0] = (WorldProj[0][1] - WorldProj[0][3]) * -1; Planes[2][1] = (WorldProj[1][1] - WorldProj[1][3]) * -1; Planes[2][2] = (WorldProj[2][1] - WorldProj[2][3]) * -1; Planes[2][3] = (WorldProj[3][1] - WorldProj[3][3]) * -1; Planes[3][0] = WorldProj[0][1] + WorldProj[0][3]; Planes[3][1] = WorldProj[1][1] + WorldProj[1][3]; Planes[3][2] = WorldProj[2][1] + WorldProj[2][3]; Planes[3][3] = WorldProj[3][1] + WorldProj[3][3]; Planes[4][0] = (WorldProj[0][2] - WorldProj[0][3]) * -1; Planes[4][1] = (WorldProj[1][2] - WorldProj[1][3]) * -1; Planes[4][2] = (WorldProj[2][2] - WorldProj[2][3]) * -1; Planes[4][3] = (WorldProj[3][2] - WorldProj[3][3]) * -1; Planes[5][0] = WorldProj[0][2] + WorldProj[0][3]; Planes[5][1] = WorldProj[1][2] + WorldProj[1][3]; Planes[5][2] = WorldProj[2][2] + WorldProj[2][3]; Planes[5][3] = WorldProj[3][2] + WorldProj[3][3]; for (int i = 0; i < 6; i++) { const lcVector3 Normal(Planes[i][0], Planes[i][1], Planes[i][2]); const float Length = Normal.Length(); Planes[i] /= -Length; } } inline std::tuple<lcVector3, float> lcZoomExtents(const lcVector3& Position, const lcMatrix44& WorldView, const lcMatrix44& Projection, const lcVector3* Points, size_t NumPoints) { if (!NumPoints) return std::make_tuple(Position, 2500.0f); lcVector4 Planes[6]; lcGetFrustumPlanes(WorldView, Projection, Planes); const lcVector3 Front(WorldView[0][2], WorldView[1][2], WorldView[2][2]); float SmallestDistance = FLT_MAX; for (int PlaneIdx = 0; PlaneIdx < 4; PlaneIdx++) { const lcVector3 Plane(Planes[PlaneIdx][0], Planes[PlaneIdx][1], Planes[PlaneIdx][2]); const float ep = lcDot(Position, Plane); const float fp = lcDot(Front, Plane); for (size_t PointIdx = 0; PointIdx < NumPoints; PointIdx++) { const float u = (ep - lcDot(Points[PointIdx], Plane)) / fp; if (u < SmallestDistance) SmallestDistance = u; } } lcVector3 NewPosition = Position - (Front * SmallestDistance); float FarDistance = 2500.0f; for (size_t PointIdx = 0; PointIdx < NumPoints; PointIdx++) { const float Distance = lcDot(Points[PointIdx], Front); if (Distance > FarDistance) FarDistance = Distance; } return std::make_tuple(NewPosition, FarDistance + lcDot(NewPosition, Front)); } inline void lcClosestPointsBetweenLines(const lcVector3& Line1a, const lcVector3& Line1b, const lcVector3& Line2a, const lcVector3& Line2b, lcVector3* Intersection1, lcVector3* Intersection2) { const lcVector3 u1 = Line1b - Line1a; const lcVector3 u2 = Line2b - Line2a; const lcVector3 p21 = Line2a - Line1a; const lcVector3 m = lcCross(u2, u1); const float m2 = lcDot(m, m); if (m2 < 0.00001f) { if (Intersection1) *Intersection1 = Line1a; if (Intersection2) *Intersection2 = Line2a; return; } const lcVector3 r = lcCross(p21, m / m2); if (Intersection1) { const float t1 = lcDot(r, u2); *Intersection1 = Line1a + t1 * u1; } if (Intersection2) { const float t2 = lcDot(r, u1); *Intersection2 = Line2a + t2 * u2; } } inline bool lcLineSegmentPlaneIntersection(lcVector3* Intersection, const lcVector3& Start, const lcVector3& End, const lcVector4& Plane) { const lcVector3 Dir = End - Start; const lcVector3 PlaneNormal(Plane[0], Plane[1], Plane[2]); const float t1 = lcDot(PlaneNormal, Start) + Plane[3]; const float t2 = lcDot(PlaneNormal, Dir); if (t2 == 0.0f) return false; const float t = -t1 / t2; *Intersection = Start + t * Dir; if ((t < 0.0f) || (t > 1.0f)) return false; return true; } inline bool lcLineTriangleMinIntersection(const lcVector3& p1, const lcVector3& p2, const lcVector3& p3, const lcVector3& Start, const lcVector3& End, float* MinDist, lcVector3* Intersection) { // Calculate the polygon plane. const lcVector3 PlaneNormal = lcCross(p1 - p2, p3 - p2); const float PlaneD = -lcDot(PlaneNormal, p1); // Check if the line is parallel to the plane. const lcVector3 Dir = End - Start; const float t1 = lcDot(PlaneNormal, Start) + PlaneD; const float t2 = lcDot(PlaneNormal, Dir); if (t2 == 0) return false; const float t = -(t1 / t2); if (t < 0) return false; // Intersection of the plane and line segment. *Intersection = Start - (t1 / t2) * Dir; float Dist = lcLength(Start - *Intersection); if (Dist > *MinDist) return false; // Check if we're inside the triangle. lcVector3 pa1, pa2, pa3; pa1 = lcNormalize(p1 - *Intersection); pa2 = lcNormalize(p2 - *Intersection); pa3 = lcNormalize(p3 - *Intersection); float a1, a2, a3; a1 = lcDot(pa1, pa2); a2 = lcDot(pa2, pa3); a3 = lcDot(pa3, pa1); const float total = (acosf(a1) + acosf(a2) + acosf(a3)) * LC_RTOD; if (fabs(total - 360) <= 0.001f) { *MinDist = Dist; return true; } return false; } // Sutherland-Hodgman method of clipping a polygon to a plane. inline void lcPolygonPlaneClip(lcVector3* InPoints, int NumInPoints, lcVector3* OutPoints, int* NumOutPoints, const lcVector4& Plane) { lcVector3 *s, *p, i; *NumOutPoints = 0; s = &InPoints[NumInPoints-1]; for (int j = 0; j < NumInPoints; j++) { p = &InPoints[j]; if (lcDot3(*p, Plane) + Plane[3] <= 0) { if (lcDot3(*s, Plane) + Plane[3] <= 0) { // Both points inside. OutPoints[*NumOutPoints] = *p; *NumOutPoints = *NumOutPoints + 1; } else { // Outside, inside. lcLineSegmentPlaneIntersection(&i, *s, *p, Plane); OutPoints[*NumOutPoints] = i; *NumOutPoints = *NumOutPoints + 1; OutPoints[*NumOutPoints] = *p; *NumOutPoints = *NumOutPoints + 1; } } else { if (lcDot3(*s, Plane) + Plane[3] <= 0) { // Inside, outside. lcLineSegmentPlaneIntersection(&i, *s, *p, Plane); OutPoints[*NumOutPoints] = i; *NumOutPoints = *NumOutPoints + 1; } } s = p; } } // Return true if a polygon intersects a set of planes. inline bool lcTriangleIntersectsPlanes(const float* p1, const float* p2, const float* p3, const lcVector4 Planes[6]) { constexpr int NumPlanes = 6; const float* const Points[3] = { p1, p2, p3 }; int Outcodes[3] = { 0, 0, 0 }, i; constexpr int NumPoints = 3; // First do the Cohen-Sutherland out code test for trivial rejects/accepts. for (i = 0; i < NumPoints; i++) { const lcVector3 Pt(Points[i][0], Points[i][1], Points[i][2]); for (int j = 0; j < NumPlanes; j++) { if (lcDot3(Pt, Planes[j]) + Planes[j][3] > 0) Outcodes[i] |= 1 << j; } } // Polygon completely outside a plane. if ((Outcodes[0] & Outcodes[1] & Outcodes[2]) != 0) return false; // If any vertex has an out code of all zeros then we intersect the volume. if (!Outcodes[0] || !Outcodes[1] || !Outcodes[2]) return true; // Buffers for clipping the polygon. lcVector3 ClipPoints[2][8]; int NumClipPoints[2]; int ClipBuffer = 0; NumClipPoints[0] = NumPoints; ClipPoints[0][0] = lcVector3(p1[0], p1[1], p1[2]); ClipPoints[0][1] = lcVector3(p2[0], p2[1], p2[2]); ClipPoints[0][2] = lcVector3(p3[0], p3[1], p3[2]); // Now clip the polygon against the planes. for (i = 0; i < NumPlanes; i++) { lcPolygonPlaneClip(ClipPoints[ClipBuffer], NumClipPoints[ClipBuffer], ClipPoints[ClipBuffer^1], &NumClipPoints[ClipBuffer^1], Planes[i]); ClipBuffer ^= 1; if (!NumClipPoints[ClipBuffer]) return false; } return true; } // Return true if a ray intersects a bounding box, and calculates the distance from the start of the ray (adapted from Graphics Gems). inline bool lcBoundingBoxRayIntersectDistance(const lcVector3& Min, const lcVector3& Max, const lcVector3& Start, const lcVector3& End, float* Dist, lcVector3* Intersection, lcVector3* Plane) { bool MiddleQuadrant[3]; bool Inside = true; float CandidatePlane[3]; float MaxT[3]; int i; // Find candidate planes. for (i = 0; i < 3; i++) { if (Start[i] < Min[i]) { MiddleQuadrant[i] = false; CandidatePlane[i] = Min[i]; Inside = false; } else if (Start[i] > Max[i]) { MiddleQuadrant[i] = false; CandidatePlane[i] = Max[i]; Inside = false; } else { MiddleQuadrant[i] = true; CandidatePlane[i] = 0.0f; } } // Ray origin inside box. if (Inside) { *Dist = 0; if (Intersection) *Intersection = Start; if (Plane) *Plane = Start; return true; } // Calculate T distances to candidate planes. lcVector3 Dir = End - Start; for (i = 0; i < 3; i++) { if (!MiddleQuadrant[i] && Dir[i] != 0.0f) MaxT[i] = (CandidatePlane[i] - Start[i]) / Dir[i]; else MaxT[i] = -1.0f; } // Get largest of the MaxT's for final choice of intersection. int WhichPlane = 0; for (i = 1; i < 3; i++) if (MaxT[WhichPlane] < MaxT[i]) WhichPlane = i; // Check final candidate actually inside box. if (MaxT[WhichPlane] < 0.0f) return false; lcVector3 Point; for (i = 0; i < 3; i++) { if (WhichPlane != i) { Point[i] = Start[i] + MaxT[WhichPlane] * Dir[i]; if (Point[i] < Min[i] || Point[i] > Max[i]) return false; } else Point[i] = CandidatePlane[i]; } *Dist = lcLength(Point - Start); if (Intersection) *Intersection = Point; if (Plane) { *Plane = lcVector3(0.0f, 0.0f, 0.0f); (*Plane)[WhichPlane] = CandidatePlane[WhichPlane]; } return true; } inline bool lcSphereRayIntersection(const lcVector3& Center, float Radius, const lcVector3& Start, const lcVector3& End, lcVector3& Intersection) { const lcVector3 RayDirection = lcNormalize(End - Start); const lcVector3 RayCenter = Center - Start; const float RayCenterSquared = lcDot(RayCenter, RayCenter); const float ClosestApproach = lcDot(RayCenter, RayDirection); if (ClosestApproach < 0) return false; const float HalfCordSquared = (Radius * Radius) - RayCenterSquared + (ClosestApproach * ClosestApproach); if (HalfCordSquared < 0) return false; Intersection = Start + RayDirection * (ClosestApproach - sqrtf(HalfCordSquared)); return true; } inline bool lcSphereRayMinIntersectDistance(const lcVector3& Center, float Radius, const lcVector3& Start, const lcVector3& End, float* Dist) { const lcVector3 Dir = Center - Start; const float LengthSquaredDir = lcLengthSquared(Dir); const float RadiusSquared = Radius * Radius; if (LengthSquaredDir < RadiusSquared) { // Ray origin inside sphere. *Dist = 0; return true; } else { const lcVector3 RayDir = End - Start; float t = lcDot(Dir, RayDir) / lcLengthSquared(RayDir); // Ray points away from sphere. if (t < 0) return false; const float c = (RadiusSquared - LengthSquaredDir) / lcLengthSquared(RayDir) + (t * t); if (c > 0) { *Dist = t - sqrtf(c); return true; } return false; } } inline bool lcConeRayMinIntersectDistance(const lcVector3& Tip, const lcVector3& Direction, float Radius, float Height, const lcVector3& Start, const lcVector3& End, float* Dist) { const lcVector3 v = End - Start; const lcVector3 h = Direction; const lcVector3 w = Start - Tip; const float vh = lcDot(v, h); const float wh = lcDot(w, h); const float m = (Radius * Radius) / (Height * Height); const float a = lcDot(v, v) - m * vh * vh - vh * vh; const float b = 2 * (lcDot(v, w) - m * vh * wh - vh * wh); const float c = lcDot(w, w) - m * wh * wh - wh * wh; const float delta = b * b - 4 * a * c; if (delta < 0.0f) return false; float ts[2] = { (-b - sqrtf(delta)) / (2 * a), (-b + sqrtf(delta)) / (2 * a) }; for (int ti = 0; ti < 2; ti++) { float t = ts[ti]; lcVector3 Intersection = Start + v * t; float ConeD = lcDot(Intersection - Tip, Direction); if (ConeD < 0.0f) continue; if (ConeD < Height) { *Dist = lcLength(Intersection - Start); return true; } lcVector3 Center(Tip + Direction * Height); lcVector4 Plane(Direction, -lcDot(Direction, Center)); if (lcLineSegmentPlaneIntersection(&Intersection, Start, End, Plane)) { if (lcLengthSquared(Center - Intersection) < Radius * Radius) { *Dist = lcLength(Intersection - Start); return true; } } } return false; } inline bool lcCylinderRayMinIntersectDistance(float Radius, float Height, const lcVector3& Start, const lcVector3& End, float* Dist) { lcVector4 BottomPlane(0.0f, 0.0f, 1.0f, 0.0f); lcVector3 Intersection; float MinDistance = FLT_MAX; if (lcLineSegmentPlaneIntersection(&Intersection, Start, End, BottomPlane)) { if (Intersection.x * Intersection.x + Intersection.y * Intersection.y < Radius * Radius) { float Distance = lcLength(Intersection - Start); if (Distance < MinDistance) MinDistance = Distance; } } lcVector4 TopPlane(0.0f, 0.0f, 1.0f, -Height); if (lcLineSegmentPlaneIntersection(&Intersection, Start, End, TopPlane)) { if (Intersection.x * Intersection.x + Intersection.y * Intersection.y < Radius * Radius) { float Distance = lcLength(Intersection - Start); if (Distance < MinDistance) MinDistance = Distance; } } lcVector3 Direction = End - Start; float a = (Direction.x * Direction.x) + (Direction.y * Direction.y); float b = 2 * (Direction.x * Start.x + Direction.y * Start.y); float c = (Start.x * Start.x) + (Start.y * Start.y) - (Radius * Radius); float delta = b * b - 4 * (a * c); if (delta > 0.0f) { float ts[2] = { (-b - sqrtf(delta)) / (2 * a), (-b + sqrtf(delta)) / (2 * a) }; for (int ti = 0; ti < 2; ti++) { float t = ts[ti]; Intersection = Start + Direction * t; if (Intersection.z < 0.0f || Intersection.z > Height) continue; float Distance = lcLength(Intersection - Start); if (Distance < MinDistance) MinDistance = Distance; } } if (MinDistance == FLT_MAX) return false; *Dist = MinDistance; return true; } inline lcVector3 lcRayPointClosestPoint(const lcVector3& Point, const lcVector3& Start, const lcVector3& End) { const lcVector3 Dir = Point - Start; const lcVector3 RayDir = End - Start; float t = lcDot(Dir, RayDir) / lcLengthSquared(RayDir); t = lcClamp(t, 0.0f, 1.0f); return Start + t * RayDir; } inline float lcRayPointDistance(const lcVector3& Point, const lcVector3& Start, const lcVector3& End) { const lcVector3 Closest = lcRayPointClosestPoint(Point, Start, End); return lcLength(Closest - Point); } // Returns true if the axis aligned box intersects the volume defined by planes. inline bool lcBoundingBoxIntersectsVolume(const lcVector3& Min, const lcVector3& Max, const lcVector4 Planes[6]) { constexpr int NumPlanes = 6; lcVector3 Points[8] = { Points[0] = lcVector3(Min[0], Min[1], Min[2]), Points[1] = lcVector3(Min[0], Max[1], Min[2]), Points[2] = lcVector3(Max[0], Max[1], Min[2]), Points[3] = lcVector3(Max[0], Min[1], Min[2]), Points[4] = lcVector3(Min[0], Min[1], Max[2]), Points[5] = lcVector3(Min[0], Max[1], Max[2]), Points[6] = lcVector3(Max[0], Max[1], Max[2]), Points[7] = lcVector3(Max[0], Min[1], Max[2]) }; // Start by testing trivial reject/accept cases. int Outcodes[8]; int i; for (i = 0; i < 8; i++) { Outcodes[i] = 0; for (int j = 0; j < NumPlanes; j++) { if (lcDot3(Points[i], Planes[j]) + Planes[j][3] > 0) Outcodes[i] |= 1 << j; } } int OutcodesOR = 0, OutcodesAND = 0x3f; for (i = 0; i < 8; i++) { OutcodesAND &= Outcodes[i]; OutcodesOR |= Outcodes[i]; } // All corners outside the same plane. if (OutcodesAND != 0) return false; // All corners inside the volume. if (OutcodesOR == 0) return true; int Indices[36] = { 0, 1, 2, 0, 2, 3, 7, 6, 5, 7, 5, 4, 0, 1, 5, 0, 5, 4, 2, 3, 7, 2, 7, 6, 0, 3, 7, 0, 7, 4, 1, 2, 6, 1, 6, 5 }; for (int Idx = 0; Idx < 36; Idx += 3) if (lcTriangleIntersectsPlanes(Points[Indices[Idx]*3], Points[Indices[Idx+1]*3], Points[Indices[Idx+2]*3], Planes)) return true; return false; } struct lcBoundingBox { lcVector3 Min; lcVector3 Max; }; inline void lcGetBoxCorners(const lcVector3& Min, const lcVector3& Max, lcVector3 Points[8]) { Points[0] = lcVector3(Max.x, Max.y, Min.z); Points[1] = lcVector3(Min.x, Max.y, Min.z); Points[2] = lcVector3(Max.x, Max.y, Max.z); Points[3] = lcVector3(Min.x, Min.y, Min.z); Points[4] = lcVector3(Min.x, Min.y, Max.z); Points[5] = lcVector3(Max.x, Min.y, Max.z); Points[6] = lcVector3(Max.x, Min.y, Min.z); Points[7] = lcVector3(Min.x, Max.y, Max.z); } inline void lcGetBoxCorners(const lcBoundingBox& BoundingBox, lcVector3 Points[8]) { lcGetBoxCorners(BoundingBox.Min, BoundingBox.Max, Points); } /* bool SphereIntersectsVolume(const Vector3& Center, float Radius, const Vector4* Planes, int NumPlanes) { for (int j = 0; j < NumPlanes; j++) if (Dot3(Center, Planes[j]) + Planes[j][3] > Radius) return false; return true; }*/ inline lcVector3 lcRGBToHSL(const lcVector3& rgb) { int Mi; float M, m, C, h, S, L; // h is H/60 Mi = (rgb[0] >= rgb[1]) ? 0 : 1; Mi = (rgb[Mi] >= rgb[2]) ? Mi : 2; M = rgb[Mi]; m = (rgb[0] < rgb[1]) ? rgb[0] : rgb[1]; m = (m < rgb[2]) ? m : rgb[2]; C = M - m; L = (M + m) / 2.0f; if (C < LC_RGB_EPSILON) // C == 0.0 h = 0.0f; else if (Mi == 0) // M == R h = 0.0f + (rgb[1] - rgb[2]) / C; else if (Mi == 1) // M == G h = 2.0f + (rgb[2] - rgb[0]) / C; else // M = B h = 4.0f + (rgb[0] - rgb[1]) / C; h = (h < 0.0) ? h + 6.0f : h; h = (h >= 6.0) ? h - 6.0f : h; S = ((L < (LC_RGB_EPSILON / 2.0f)) || (L > (1.0f -(LC_RGB_EPSILON / 2.0f)))) ? 0.0f : (2.0f * (M - L)) / (1.0f - fabs((2.0f * L) - 1.0f)) ; return lcVector3(h, S, L); } inline lcVector3 lcHSLToRGB(const lcVector3& hSL) { lcVector3 rgb; float h, S, L, C, X, m; h = hSL[0]; S = hSL[1]; L = hSL[2]; C = (1.0f - fabs(2.0f * L - 1.0f)) * S; X = C * (1.0f - fabs(fmodf(h, 2.0f) - 1.0f)); if (h < 1.0f) rgb = lcVector3(C, X, 0.0f); else if (h < 2.0f) rgb = lcVector3(X, C, 0.0f); else if (h < 3.0f) rgb = lcVector3(0.0f, C, X); else if (h < 4.0f) rgb = lcVector3(0.0f, X, C); else if (h < 5.0f) rgb = lcVector3(X, 0.0f, C); else rgb = lcVector3(C, 0.0f, X); m = L - C / 2.0f; rgb += m; return rgb; } inline lcVector4 lcAlgorithmicEdgeColor(const lcVector3& Value, const float ValueLum, const float EdgeLum, const float Contrast, const float Saturation) { float y1, yt; lcVector3 hSL, rgb1, rgbf; // Determine luma target if (EdgeLum < ValueLum) { // Light base color yt = ValueLum - Contrast * ValueLum; } else { // Dark base color yt = ValueLum + Contrast * (1.0f - ValueLum); } // Get base color in hSL hSL = lcRGBToHSL(Value); // Adjust saturation // sat = 4.0f * sat - 2.0f; // if (sat < 0.0f) // { // sat = -sat; // hSL[0] = (hSL[0] < 3.0f) ? hSL[0] + 3.0f : hSL[0] - 3.0f; // } // sat = (sat > 2.0f) ? 2.0f : sat; // if (sat > 1.0f) // { // // Supersaturate // sat -= 1.0f; // hSL[1] += sat * (1.0f - hSL[1]); // } // else // { // Desaturate hSL[1] *= Saturation; // } // Adjusted color to RGB rgb1 = lcHSLToRGB(lcVector3(hSL[0], hSL[1], 0.5f)); // Fix adjusted color luma to target value y1 = lcLuminescence(rgb1); if (yt < y1) { // Make darker via scaling rgbf = (yt/y1) * rgb1; } else { // Make lighter via scaling anti-color rgbf = lcVector3(1.0f, 1.0f, 1.0f) - rgb1; rgbf *= (1.0f - yt) / (1.0f - y1); rgbf = lcVector3(1.0f, 1.0f, 1.0f) - rgbf; } return lcVector4(lcLinearToSRGB(rgbf), 1.0f); } Q_DECLARE_METATYPE(lcVector3);