hp-saturn/saturn_alu.v
Raphael Jacquot 7088a8dcc7 add copyright
2019-02-20 09:19:00 +01:00

1222 lines
No EOL
33 KiB
Verilog

/*
(c) Raphaël Jacquot 2019
This file is part of hp_saturn.
hp_saturn is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
any later version.
hp_saturn is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Foobar. If not, see <https://www.gnu.org/licenses/>.
*/
`ifndef _SATURN_ALU
`define _SATURN_ALU
`include "def-alu.v"
`ifdef SIM
// `define ALU_DEBUG_DBG
`endif
`define ALU_DEBUG 1'b0
`define ALU_DEBUG_DUMP 1'b1
`define ALU_DEBUG_JUMP 1'b0
`define ALU_DEBUG_PC 1'b0
module saturn_alu (
i_clk,
i_reset,
i_clk_ph,
i_cycle_ctr,
i_en_alu_dump,
i_en_alu_prep,
i_en_alu_calc,
i_en_alu_init,
i_en_alu_save,
i_stalled,
o_bus_address,
o_bus_xfr_cnt,
o_bus_pc_read,
o_bus_dp_read,
o_bus_dp_write,
o_bus_load_pc,
o_bus_load_dp,
o_bus_config,
i_bus_nibble_in,
o_bus_nibble_out,
i_push,
i_pop,
i_alu_debug,
o_alu_stall_dec,
i_ins_decoded,
i_field_start,
i_field_last,
i_imm_value,
i_alu_op,
i_alu_no_stall,
i_reg_dest,
i_reg_src1,
i_reg_src2,
i_ins_alu_op,
i_ins_test_go,
i_ins_set_mode,
i_ins_rtn,
i_ins_config,
i_ins_mem_xfr,
i_xfr_dir_out,
i_ins_unconfig,
i_mode_dec,
i_set_xm,
i_set_carry,
i_test_carry,
i_carry_val,
o_reg_p,
o_pc
);
input wire [0:0] i_clk;
input wire [0:0] i_reset;
input wire [1:0] i_clk_ph;
input wire [31:0] i_cycle_ctr;
input wire [0:0] i_en_alu_dump;
input wire [0:0] i_en_alu_prep;
input wire [0:0] i_en_alu_calc;
input wire [0:0] i_en_alu_init;
input wire [0:0] i_en_alu_save;
input wire [0:0] i_stalled;
output reg [19:0] o_bus_address;
output reg [3:0] o_bus_xfr_cnt;
output reg [0:0] o_bus_pc_read;
output reg [0:0] o_bus_dp_read;
output reg [0:0] o_bus_dp_write;
output reg [0:0] o_bus_load_pc;
output reg [0:0] o_bus_load_dp;
output reg [0:0] o_bus_config;
input wire [3:0] i_bus_nibble_in;
output reg [3:0] o_bus_nibble_out;
input wire [0:0] i_push;
input wire [0:0] i_pop;
input wire [0:0] i_alu_debug;
wire alu_debug;
wire alu_debug_dump;
wire alu_debug_jump;
wire alu_debug_pc;
assign alu_debug = `ALU_DEBUG || i_alu_debug;
assign alu_debug_dump = `ALU_DEBUG_DUMP || i_alu_debug;
assign alu_debug_jump = `ALU_DEBUG_JUMP || i_alu_debug;
assign alu_debug_pc = `ALU_DEBUG_PC || i_alu_debug;
output wire [0:0] o_alu_stall_dec;
input wire [0:0] i_ins_decoded;
input wire [3:0] i_field_start;
input wire [3:0] i_field_last;
input wire [3:0] i_imm_value;
input wire [4:0] i_alu_op;
input wire [0:0] i_alu_no_stall;
input wire [4:0] i_reg_dest;
input wire [4:0] i_reg_src1;
input wire [4:0] i_reg_src2;
input wire [0:0] i_ins_alu_op;
input wire [0:0] i_ins_test_go;
input wire [0:0] i_ins_set_mode;
input wire [0:0] i_ins_rtn;
input wire [0:0] i_ins_config;
input wire [0:0] i_ins_mem_xfr;
input wire [0:0] i_xfr_dir_out;
input wire [0:0] i_ins_unconfig;
input wire [0:0] i_mode_dec;
input wire [0:0] i_set_xm;
input wire [0:0] i_set_carry;
input wire [0:0] i_test_carry;
input wire [0:0] i_carry_val;
output wire [3:0] o_reg_p;
output wire [19:0] o_pc;
assign o_reg_p = P;
assign o_pc = PC;
/* internal registers */
wire [1:0] phase;
assign phase = i_clk_ph + 3;
/* copy of arguments */
reg [4:0] alu_op;
reg [4:0] reg_dest;
reg [4:0] reg_src1;
reg [4:0] reg_src2;
reg [3:0] f_first;
reg [3:0] f_cur;
reg [3:0] f_last;
/* internal pointers */
reg [3:0] p_src1;
reg [3:0] p_src2;
reg [0:0] p_carry;
reg [3:0] c_res1;
reg [3:0] c_res2;
reg [0:0] c_carry;
reg [0:0] is_zero;
/* alu status */
reg alu_run;
reg alu_done;
reg alu_go_test;
/*
* next PC in case of jump
*/
reg [19:0] jump_bse;
reg [19:0] jump_off;
wire [19:0] jump_pc;
assign jump_pc = (alu_op == `ALU_OP_JMP_ABS5)?jump_off:(jump_bse + jump_off);
reg [2:0] rstk_ptr;
/* public registers */
reg [19:0] PC;
reg [19:0] D0;
reg [19:0] D1;
//reg [63:0] A;
reg [3:0] A[0:15];
reg [3:0] B[0:15];
reg [3:0] C[0:15];
reg [3:0] D[0:15];
reg [3:0] R0[0:15];
reg [3:0] R1[0:15];
reg [3:0] R2[0:15];
reg [3:0] R3[0:15];
reg [3:0] R4[0:15];
reg [0:0] CARRY;
reg [0:0] DEC;
reg [3:0] P;
reg [3:0] HST;
reg [15:0] ST;
reg [19:0] RSTK[0:7];
initial begin
end
/*
* can the alu function ?
*/
wire alu_active;
assign alu_active = !i_reset && !i_stalled;
/*
* simulation only states, when alu is active
*/
`ifdef SIM
wire do_reg_dump;
wire do_alu_shpc;
assign do_reg_dump = alu_active && i_en_alu_dump && !o_bus_load_pc &&
i_ins_decoded && !o_alu_stall_dec;
assign do_alu_shpc = alu_active && i_en_alu_dump;
`endif
wire do_busclean;
wire do_alu_init;
wire do_alu_prep;
wire do_alu_calc;
wire do_alu_save;
wire do_alu_pc;
wire do_alu_mode;
assign do_busclean = alu_active && i_en_alu_dump;
assign do_alu_init = alu_active && i_en_alu_init && i_ins_alu_op && !alu_run &&
!write_done && !do_exec_p_eq && !o_bus_config;
assign do_alu_prep = alu_active && i_en_alu_prep && alu_run;
assign do_alu_calc = alu_active && i_en_alu_calc && alu_run;
assign do_alu_save = alu_active && i_en_alu_save && alu_run;
assign do_alu_pc = alu_active && i_en_alu_save;
assign do_alu_mode = alu_active && i_en_alu_save && i_ins_set_mode;
wire do_go_init;
wire do_go_prep;
wire do_go_calc;
assign do_go_init = alu_active && i_en_alu_save && i_ins_test_go;
assign do_go_prep = alu_active && i_en_alu_prep && i_ins_test_go;
// now for the fine tuning ;-)
// save one cycle on P= n!
wire is_alu_op_copy;
wire is_reg_dest_p;
wire is_reg_src1_imm;
wire do_exec_p_eq;
assign is_alu_op_copy = (i_alu_op == `ALU_OP_COPY);
assign is_reg_dest_p = (i_reg_dest == `ALU_REG_P);
assign is_reg_src1_imm = (i_reg_src1 == `ALU_REG_IMM);
assign do_exec_p_eq = alu_active && i_en_alu_save && i_ins_alu_op && is_alu_op_copy && is_reg_dest_p && is_reg_src1_imm;
initial begin
// $monitor({"ALU - ph %0d | ",
// "i_reset %b | i_stalled %b | nostll %b | ",
// "init %b | act %b | run %b | done %b | fin %b | ",
// "idump %b | oblpc %b | idec %b | bconf %b | stdec %b "},
// phase,
// i_reset, i_stalled, i_alu_no_stall,
// do_alu_init, alu_active, alu_run, alu_done, alu_finish,
// i_en_alu_dump, o_bus_load_pc, i_ins_decoded, o_bus_config, o_alu_stall_dec);
end
// the decoder may request the ALU to not stall it
wire bus_commands;
assign bus_commands = o_bus_config || o_bus_dp_write ;
assign o_alu_stall_dec = alu_initializing ||
(alu_run && (!i_alu_no_stall || alu_finish || i_ins_mem_xfr)) ||
i_stalled || bus_commands;
wire alu_start;
wire alu_finish;
wire [3:0] f_next;
assign alu_start = f_cur == f_first;
assign alu_finish = f_cur == f_last;
assign f_next = (f_cur + 1) & 4'hF;
/*
* test things on alu_op
*/
wire is_alu_op_unc_jump;
assign is_alu_op_unc_jump = ((alu_op == `ALU_OP_JMP_REL3) ||
(alu_op == `ALU_OP_JMP_REL4) ||
(alu_op == `ALU_OP_JMP_ABS5) ||
i_ins_rtn);
wire is_alu_op_test;
assign is_alu_op_test = ((alu_op == `ALU_OP_TEST_EQ) ||
(alu_op == `ALU_OP_TEST_NEQ));
/*****************************************************************************
*
* Dump all registers at the end of each instruction's execution cycle
*
****************************************************************************/
`ifdef SIM
reg [4:0] alu_dbg_ctr;
`endif
always @(posedge i_clk) begin
`ifdef SIM
// if (i_stalled && i_en_alu_dump)
// $display("ALU STALLED");
`endif
`ifdef ALU_DEBUG_DBG
$display("iad %b | AD %b | ad %b | ADD %b | add %b | ADJ %b | adj %b | ADP %b | adp %b",
i_alu_debug,
`ALU_DEBUG, i_alu_debug,
`ALU_DEBUG_DUMP, alu_debug_dump,
`ALU_DEBUG_JUMP, alu_debug_jump,
`ALU_DEBUG_PC, alu_debug_pc );
`endif
`ifdef SIM
if (do_reg_dump && alu_debug_dump) begin
$display("ALU_DUMP 0: run %b | done %b", alu_run, alu_done);
// display registers
$display("PC: %05h Carry: %b h: %s rp: %h RSTK7: %05h",
PC, CARRY, DEC?"DEC":"HEX", rstk_ptr, RSTK[7]);
$display("P: %h HST: %b ST: %b RSTK6: %5h",
P, HST, ST, RSTK[6]);
$write("A: ");
for(alu_dbg_ctr=15;alu_dbg_ctr!=31;alu_dbg_ctr=alu_dbg_ctr-1)
$write("%h", A[alu_dbg_ctr]);
$write(" R0: ");
for(alu_dbg_ctr=15;alu_dbg_ctr!=31;alu_dbg_ctr=alu_dbg_ctr-1)
$write("%h", R0[alu_dbg_ctr]);
$write(" RSTK5: %5h\n", RSTK[5]);
$write("B: ");
for(alu_dbg_ctr=15;alu_dbg_ctr!=31;alu_dbg_ctr=alu_dbg_ctr-1)
$write("%h", B[alu_dbg_ctr]);
$write(" R1: ");
for(alu_dbg_ctr=15;alu_dbg_ctr!=31;alu_dbg_ctr=alu_dbg_ctr-1)
$write("%h", R1[alu_dbg_ctr]);
$write(" RSTK4: %5h\n", RSTK[4]);
$write("C: ");
for(alu_dbg_ctr=15;alu_dbg_ctr!=31;alu_dbg_ctr=alu_dbg_ctr-1)
$write("%h", C[alu_dbg_ctr]);
$write(" R2: ");
for(alu_dbg_ctr=15;alu_dbg_ctr!=31;alu_dbg_ctr=alu_dbg_ctr-1)
$write("%h", R2[alu_dbg_ctr]);
$write(" RSTK3: %5h\n", RSTK[3]);
$write("D: ");
for(alu_dbg_ctr=15;alu_dbg_ctr!=31;alu_dbg_ctr=alu_dbg_ctr-1)
$write("%h", D[alu_dbg_ctr]);
$write(" R3: ");
for(alu_dbg_ctr=15;alu_dbg_ctr!=31;alu_dbg_ctr=alu_dbg_ctr-1)
$write("%h", R3[alu_dbg_ctr]);
$write(" RSTK2: %5h\n", RSTK[2]);
$write("D0: %h D1: %h R4: ", D0, D1);
for(alu_dbg_ctr=15;alu_dbg_ctr!=31;alu_dbg_ctr=alu_dbg_ctr-1)
$write("%h", R4[alu_dbg_ctr]);
$write(" RSTK1: %5h\n", RSTK[1]);
$display(" ADDR: %5h RSTK0: %5h",
o_bus_address, RSTK[0]);
end
`endif
end
/*****************************************************************************
*
* Initialize the ALU, to prepare it to execute the instruction
*
****************************************************************************/
wire [0:0] is_mem_read;
wire [0:0] is_mem_write;
wire [0:0] is_mem_xfer;
wire [4:0] mem_reg;
assign is_mem_read = (i_reg_src1 == `ALU_REG_DAT0) || (i_reg_src1 == `ALU_REG_DAT1);
assign is_mem_write = (i_reg_dest == `ALU_REG_DAT0) || (i_reg_dest == `ALU_REG_DAT1);
assign is_mem_xfer = is_mem_read || is_mem_write;
assign mem_reg = is_mem_read?i_reg_src1:i_reg_dest;
always @(posedge i_clk) begin
if (i_reset) begin
alu_op <= 0;
reg_dest <= 0;
reg_src1 <= 0;
reg_src2 <= 0;
f_last <= 0;
end
// this happens in phase 3, right after the instruction decoder (in phase 2) is finished
if (do_alu_init) begin
`ifdef SIM
if (alu_debug)
$display({"ALU_INIT 3: run %b | done %b | stall %b | op %d | s %h | l %h ",
"| ialu %b | dest %d | src1 %d | src2 %d | imm %h"},
alu_run, alu_done, o_alu_stall_dec, i_alu_op,i_field_start, i_field_last,
i_ins_alu_op, i_reg_dest, i_reg_src1, i_reg_src2, i_imm_value);
`endif
alu_op <= i_alu_op;
reg_dest <= i_reg_dest;
reg_src1 <= i_reg_src1;
reg_src2 <= i_reg_src2;
f_last <= i_field_last;
end
end
/*
* handles f_start, alu_run and alu_done
*/
always @(posedge i_clk) begin
if (i_reset) begin
alu_run <= 0;
alu_done <= 0;
f_first <= 0;
f_cur <= 0;
end
if (alu_initializing)
f_cur <= f_cur + 1;
if (do_alu_init) begin
$display("ALU %0d - ------------------------------------------------- DO_ALU_INIT", phase);
alu_run <= 1;
f_first <= i_field_start;
f_cur <= i_field_start;
alu_go_test <= is_alu_op_test;
end
if (do_alu_prep) begin
// $display("ALU_TEST 1: tf %b | nxt %h", test_finish, f_next);
alu_done <= 0;
end
if (do_alu_calc) begin
// $display("ALU_TEST 2: tf %b | nxt %h", test_finish, f_next);
alu_done <= alu_finish;
// f_next <= (f_start + 1) & 4'hF;
end
if (do_alu_save) begin
// $display("ALU_TEST 3: tf %b | nxt %h", test_finish, f_next);
f_cur <= f_next;
end
if (do_alu_save && alu_done) begin
alu_run <= 0;
alu_done <= 0;
end
end
always @(posedge i_clk) begin
if (i_reset) begin
p_src1 <= 0;
p_src2 <= 0;
p_carry <= 0;
jump_bse <= 0;
end
if (do_alu_prep) begin
if (alu_debug) begin
`ifdef SIM
$display("ALU_PREP 1: run %b | done %b | stall %b | op %d | f %h | c %h | l %h | imm %h",
alu_run, alu_done, o_alu_stall_dec, alu_op, f_first, f_cur, f_last, i_imm_value);
`endif
end
/*
* source 1
*/
case (alu_op)
`ALU_OP_ZERO: begin end // no source required
`ALU_OP_COPY,
`ALU_OP_EXCH,
`ALU_OP_RST_BIT,
`ALU_OP_SET_BIT,
`ALU_OP_2CMPL,
`ALU_OP_DEC,
`ALU_OP_ADD,
`ALU_OP_TEST_EQ,
`ALU_OP_TEST_NEQ,
`ALU_OP_JMP_REL2,
`ALU_OP_JMP_REL3,
`ALU_OP_JMP_REL4,
`ALU_OP_JMP_ABS5,
`ALU_OP_CLR_MASK:
case (reg_src1)
`ALU_REG_A: p_src1 <= A[f_cur];
`ALU_REG_B: p_src1 <= B[f_cur];
`ALU_REG_C: p_src1 <= C[f_cur];
`ALU_REG_D: p_src1 <= D[f_cur];
`ALU_REG_R0: p_src1 <= R0[f_cur];
`ALU_REG_R1: p_src1 <= R1[f_cur];
`ALU_REG_R2: p_src1 <= R2[f_cur];
`ALU_REG_R3: p_src1 <= R3[f_cur];
`ALU_REG_R4: p_src1 <= R4[f_cur];
`ALU_REG_D0: p_src1 <= D0[f_cur*4+:4];
`ALU_REG_D1: p_src1 <= D1[f_cur*4+:4];
`ALU_REG_P: p_src1 <= P;
`ALU_REG_DAT0,
`ALU_REG_DAT1: p_src1 <= i_bus_nibble_in;
`ALU_REG_HST: p_src1 <= HST;
`ALU_REG_IMM: p_src1 <= i_imm_value;
`ALU_REG_ZERO: p_src1 <= 0;
default: $display("#### SRC_1 UNHANDLED REGISTER %0d", reg_src1);
endcase
default: $display("#### SRC_1 UNHANDLED OPERATION %0d", alu_op);
endcase
/*
* source 2
*/
case (alu_op)
`ALU_OP_ZERO,
`ALU_OP_COPY,
`ALU_OP_RST_BIT,
`ALU_OP_SET_BIT,
`ALU_OP_2CMPL,
`ALU_OP_DEC,
`ALU_OP_JMP_REL2,
`ALU_OP_JMP_REL3,
`ALU_OP_JMP_REL4,
`ALU_OP_JMP_ABS5: begin end // no need for a 2nd operand
`ALU_OP_EXCH,
`ALU_OP_ADD,
`ALU_OP_TEST_EQ,
`ALU_OP_TEST_NEQ,
`ALU_OP_CLR_MASK: begin
case (reg_src2)
`ALU_REG_A: p_src2 <= A[f_cur];
`ALU_REG_B: p_src2 <= B[f_cur];
`ALU_REG_C: p_src2 <= C[f_cur];
`ALU_REG_D: p_src2 <= D[f_cur];
`ALU_REG_R0: p_src2 <= R0[f_cur];
`ALU_REG_R1: p_src2 <= R1[f_cur];
`ALU_REG_R2: p_src2 <= R2[f_cur];
`ALU_REG_R3: p_src2 <= R3[f_cur];
`ALU_REG_R4: p_src2 <= R4[f_cur];
`ALU_REG_D0: p_src2 <= D0[f_cur*4+:4];
`ALU_REG_D1: p_src2 <= D1[f_cur*4+:4];
`ALU_REG_P: p_src2 <= P;
`ALU_REG_HST: p_src2 <= HST;
`ALU_REG_IMM: p_src2 <= i_imm_value;
`ALU_REG_ZERO: p_src2 <= 0;
default: $display("#### SRC_2 UNHANDLED REGISTER %0d", reg_src2);
endcase
end
default: $display("#### SRC_2 UNHANDLED OPERATION %0d", alu_op);
endcase
// setup p_carry
// $display("fs %h | fs=0 %b | cc %b | npc %b", f_start, (f_start == 0), c_carry, (f_start == 0)?1'b1:c_carry);
case (alu_op)
`ALU_OP_2CMPL: p_carry <= alu_start?1'b1:c_carry;
`ALU_OP_DEC: p_carry <= alu_start?1'b0:c_carry;
`ALU_OP_ADD: p_carry <= alu_start?1'b0:c_carry;
`ALU_OP_TEST_NEQ: p_carry <= alu_start?1'b0:c_carry;
endcase
// prepare jump base
case (alu_op)
`ALU_OP_JMP_REL2,
`ALU_OP_JMP_REL3,
`ALU_OP_JMP_REL4:
begin
// the address of the first digit of the offset
if (!i_push && alu_start)
jump_bse <= PC - 1;
// doc says address of the next instruction, but appears to be off by 1
if (i_push)
jump_bse <= PC;
end
endcase
end
end
always @(posedge i_clk) begin
if (i_reset) begin
c_res1 <= 0;
c_res2 <= 0;
c_carry <= 0;
is_zero <= 0;
jump_off <= 0;
end
if (do_alu_calc) begin
`ifdef SIM
if (alu_debug)
$display("ALU_CALC 2: run %b | done %b | stall %b | op %d | f %h | c %h | l %h | dest %d | psrc1 %h | psrc2 %h | p_carry %b",
alu_run, alu_done, o_alu_stall_dec, alu_op, f_first, f_cur, f_last, reg_dest, p_src1, p_src2, p_carry);
if (alu_debug_jump)
$display("ALU_JUMP 2: run %b | done %b | stall %b | op %d | f %h | c %h | l %h | jbs %5h | jof %5h | jpc %5h | fin %b",
alu_run, alu_done, o_alu_stall_dec, alu_op, f_first, f_cur, f_last, jump_bse, jump_off, jump_pc, alu_finish);
`endif
if(alu_start)
case (alu_op)
`ALU_OP_JMP_REL2,
`ALU_OP_JMP_REL3,
`ALU_OP_JMP_REL4,
`ALU_OP_JMP_ABS5: jump_off <= { 16'b0, p_src1 };
endcase
// main case
case (alu_op)
`ALU_OP_ZERO: c_res1 <= 0;
`ALU_OP_EXCH:
begin
c_res1 <= p_src2;
c_res2 <= p_src1;
end
`ALU_OP_COPY,
`ALU_OP_RST_BIT,
`ALU_OP_SET_BIT: c_res1 <= p_src1;
`ALU_OP_2CMPL: begin
c_carry <= (~p_src1 == 4'hf) && p_carry ;
c_res1 <= ~p_src1 + {3'b000, p_carry};
is_zero <= ((~p_src1 + {3'b000, p_carry}) == 0) && alu_start?1:is_zero;
end
`ALU_OP_DEC:
{c_carry, c_res1} <= p_src1 + 4'b1111 + {4'b0000, p_carry};
`ALU_OP_ADD:
{c_carry, c_res1} <= p_src1 + p_src2 + {4'b0000, p_carry};
`ALU_OP_TEST_NEQ:
c_carry <= !(p_src1 == p_src2) || p_carry;
`ALU_OP_JMP_REL2: begin end // there is no middle part
`ALU_OP_JMP_REL3,
`ALU_OP_JMP_REL4,
`ALU_OP_JMP_ABS5: jump_off[f_cur*4+:4] <= p_src1;
`ALU_OP_CLR_MASK: c_res1 <= p_src1 & ~p_src2;
default: $display("#### CALC 2 UNHANDLED OPERATION %0d", alu_op);
endcase
if (alu_finish)
case (alu_op)
`ALU_OP_JMP_REL2: jump_off <= { {12{p_src1[3]}}, p_src1, jump_off[3:0] };
`ALU_OP_JMP_REL3: jump_off <= { {8{p_src1[3]}}, p_src1, jump_off[7:0] };
`ALU_OP_JMP_REL4: jump_off <= { {4{p_src1[3]}}, p_src1, jump_off[11:0] };
endcase
// $display("-------C- SRC1 %b %h | ~SRC1 %b %h | PC %b | RES1 %b %h | CC %b",
// p_src1, p_src1, ~p_src1, ~p_src1, p_carry,
// (~p_src1) + p_carry, (~p_src1) + p_carry,
// (~p_src1) == 4'hf );
end
if (do_go_init) begin
// $display("GO_INIT 3: imm %h", i_imm_value);
jump_off <= { {16{1'b0}}, i_imm_value};
end
end
/******************************************************************************
* save alu registers after calculations
*
* this is the only place the registers can be updated !
*
*
*
*
*
*
*****************************************************************************/
reg [0:0] alu_initializing;
always @(posedge i_clk) begin
/*
* Initialization of all registers
* This happens at the same time the first LOAD_PC command goes out
*
*/
if (i_reset) begin
alu_initializing <= 1;
CARRY <= 0;
P <= 0;
D0 <= 0;
D1 <= 0;
end
if (alu_initializing) begin
A[f_cur] <= 0;
B[f_cur] <= 0;
C[f_cur] <= 0;
D[f_cur] <= 0;
R0[f_cur] <= 0;
R1[f_cur] <= 0;
R2[f_cur] <= 0;
R3[f_cur] <= 0;
R4[f_cur] <= 0;
ST[f_cur] <= 0;
HST[f_cur[1:0]] <= 0;
alu_initializing <= (f_cur != 15);
end
/*
*
* Debug for some JUMP condition testing
*
*/
if (do_alu_save || do_go_prep) begin
if (alu_debug_jump) begin
`ifdef SIM
$display({"ALU_JUMP 3: run %b | done %b | stall %b | op %d | f %h | ",
"c %h | l %h | bse %5h | jof %5h | jpc %5h | fin %b"},
alu_run, alu_done, o_alu_stall_dec, alu_op, f_first, f_cur,
f_last, jump_bse, jump_off, jump_pc, alu_finish);
`endif
end
end
/*
*
* Epic shortcut for P= n case
*
*/
if (do_exec_p_eq) begin
P <= i_imm_value;
end
/*
* normal way for the ALU to save results.
*
*
*/
if (do_alu_save) begin
`ifdef SIM
if (alu_debug) begin
$display({"ALU_SAVE 3: run %b | done %b | stall %b | op %d | f %h | c %h | l %h |",
" dest %d | cres1 %h | cres2 %h | psrc1 %h | psrc2 %h | c_carry %b"},
alu_run, alu_done, o_alu_stall_dec, alu_op,
f_first, f_cur, f_last, reg_dest, c_res1, c_res2, p_src1, p_src2, c_carry);
end
`endif
case (alu_op)
`ALU_OP_ZERO,
`ALU_OP_COPY,
`ALU_OP_EXCH, // does the first assign
`ALU_OP_2CMPL,
`ALU_OP_DEC,
`ALU_OP_ADD,
`ALU_OP_CLR_MASK:
case (reg_dest)
`ALU_REG_A: A[f_cur] <= c_res1;
`ALU_REG_B: B[f_cur] <= c_res1;
`ALU_REG_C: C[f_cur] <= c_res1;
`ALU_REG_D: D[f_cur] <= c_res1;
`ALU_REG_R0: R0[f_cur] <= c_res1;
`ALU_REG_R1: R1[f_cur] <= c_res1;
`ALU_REG_R2: R2[f_cur] <= c_res1;
`ALU_REG_R3: R3[f_cur] <= c_res1;
`ALU_REG_R4: R4[f_cur] <= c_res1;
`ALU_REG_D0: D0[f_cur*4+:4] <= c_res1;
`ALU_REG_D1: D1[f_cur*4+:4] <= c_res1;
`ALU_REG_ST: ST[f_cur*4+:4] <= c_res1;
`ALU_REG_P: P <= c_res1;
`ALU_REG_DAT0,
`ALU_REG_DAT1: o_bus_nibble_out <= c_res1;
`ALU_REG_HST: HST <= c_res1;
`ALU_REG_ADDR: begin end // done down below where o_bus_addr is accessible
default: $display("#### ALU_SAVE invalid register %0d for op %0d", reg_dest, alu_op);
endcase
`ALU_OP_RST_BIT,
`ALU_OP_SET_BIT:
case (reg_dest)
`ALU_REG_ST: ST[c_res1] <= alu_op==`ALU_OP_SET_BIT?1:0;
default: $display("#### ALU_SAVE invalid register %0d for op %0d", reg_dest, alu_op);
endcase
`ALU_OP_TEST_EQ,
`ALU_OP_TEST_NEQ,
`ALU_OP_JMP_REL2,
`ALU_OP_JMP_REL3,
`ALU_OP_JMP_REL4,
`ALU_OP_JMP_ABS5: begin end // nothing to save, handled by PC management below
default: $display("#### ALU_SAVE UNHANDLED OP %0d", alu_op);
endcase
/*
* in case of exch, we need to update src2 to finish the exchange
*/
case (alu_op)
`ALU_OP_EXCH: // 2nd assign, with src2
case (reg_src2)
`ALU_REG_A: A[f_cur] <= c_res2;
`ALU_REG_B: B[f_cur] <= c_res2;
`ALU_REG_C: C[f_cur] <= c_res2;
`ALU_REG_D: D[f_cur] <= c_res2;
`ALU_REG_D0: D0[f_cur*4+:4] <= c_res2;
`ALU_REG_D1: D1[f_cur*4+:4] <= c_res2;
`ALU_REG_R0: R0[f_cur] <= c_res2;
`ALU_REG_R1: R1[f_cur] <= c_res2;
`ALU_REG_R2: R2[f_cur] <= c_res2;
`ALU_REG_R3: R3[f_cur] <= c_res2;
`ALU_REG_R4: R4[f_cur] <= c_res2;
// `ALU_REG_ST: ST[f_start*4+:4] <= c_res2;
// `ALU_REG_P: P <= c_res2;
// `ALU_REG_HST: HST <= c_res2;
endcase
endcase
end
/*
* update carry
*/
if (do_alu_save) begin
case (alu_op)
`ALU_OP_2CMPL: CARRY <= !is_zero;
`ALU_OP_DEC,
`ALU_OP_ADD,
`ALU_OP_TEST_EQ,
`ALU_OP_TEST_NEQ: CARRY <= c_carry;
endcase
end
// do whatever is requested by the RTN instruction
if (alu_active && i_ins_rtn) begin
if (i_set_xm)
HST[`ALU_HST_XM] <= 1;
if (i_set_carry)
CARRY <= i_carry_val;
end
end
/******************************************************************************
*
* facility to detect that we just came out of reset
*
*****************************************************************************/
reg [0:0] just_reset;
always @(posedge i_clk) begin
if (i_reset)
just_reset <= 1;
if (just_reset && do_alu_pc) begin
just_reset <= 0;
$display("---------------------------------------- CLEARING JUST_RESET");
end
end
/******************************************************************************
*
* WRITE TO MEMORY
*
*
* Request the D0 or D1 pointers to be loaded to other
* modules through the bus
*
*
*
*
*****************************************************************************/
reg [0:0] write_done;
reg [1:0] extra_cycles;
wire [0:0] read_done;
wire [0:0] read_done_t;
wire [0:0] setup_load_dp_read;
wire [0:0] setup_load_dp_write;
wire [0:0] setup_load_dp;
wire [0:0] no_extra_cycles;
wire [1:0] cycles_to_go;
assign read_done_t = is_mem_read && do_alu_save && ((f_cur +1) == f_last);
assign read_done = (phase == 3) && i_stalled && is_mem_read && !do_alu_save && (f_cur == f_last);
assign setup_load_dp_read = do_alu_init && is_mem_read && !read_done;
assign setup_load_dp_write = do_alu_init && is_mem_write && !write_done;
assign setup_load_dp = setup_load_dp_read || setup_load_dp_write;
assign no_extra_cycles = (extra_cycles == 0);
assign cycles_to_go = extra_cycles - 1;
reg [3:0] _f;
reg [3:0] _l;
always @(posedge i_clk) begin
// reset stuff
if (i_reset) begin
// read_done <= 0;
write_done <= 0;
extra_cycles <= 0;
o_bus_load_dp <= 0;
o_bus_dp_read <= 0;
o_bus_dp_write <= 0;
end
/*
* reading
* note: starts immediately
*/
if (setup_load_dp_read) begin
o_bus_load_dp <= 1;
o_bus_dp_read <= 1;
$display("%0d =========================================== XFR INIT %0d %0d => %0d",
phase, f_first, f_last, f_last - f_first);
o_bus_xfr_cnt <= f_last - f_first;
end
// $display("phase %0d | i_stalled %b | is_mem_read %b | do_alu_save %b | f_cur+1 %0d | f_last %0d | read_done %b",
// phase, i_stalled, is_mem_read, do_alu_save, f_cur+1, f_last, read_done);
if (read_done_t) begin
$display("============================================= NEW read done");
end
if (read_done) begin
$display("============================================= old read_done");
o_bus_load_dp <= 0;
o_bus_dp_read <= 0;
end
/*
* writing
*/
// setup the order to load DP in time
if (setup_load_dp_write) begin
o_bus_load_dp <= 1;
end
// tell the bus to start the write cycle
// this will take 1 cycle because we need to send the DP_WRITE command
if (do_busclean && alu_run && !write_done && is_mem_write && !o_bus_dp_write)
o_bus_dp_write <= 1;
// writing takes 2 more cycles :
// - one used up above
// - one used down below to restore the PC_READ command
if (do_alu_save && alu_finish && is_mem_write && (extra_cycles == 0)) begin
extra_cycles <= 2;
write_done <= 1;
end
// if we're on cycle the last of the extra cycles, send the PC_READ command
// so as to allow reading the instructions streams again to the decoder
if (i_en_alu_calc && !no_extra_cycles) begin
extra_cycles <= cycles_to_go;
if (cycles_to_go == 1) begin
o_bus_dp_write <= 0;
o_bus_pc_read <= 1;
end
end
// once the PC_READ command has been sent, remove the stall on the decoder
if (i_en_alu_dump && no_extra_cycles && o_bus_pc_read) begin
o_bus_pc_read <= 0;
write_done <= 0;
end
if (do_busclean && o_bus_load_dp)
o_bus_load_dp <= 0;
end
/*****************************************************************************
*
* config and unconfig
*
****************************************************************************/
wire is_bus_config;
assign is_bus_config = (alu_op == `ALU_OP_COPY) && (reg_dest == `ALU_REG_ADDR);
wire send_config;
assign send_config = alu_active && (phase == 1) && i_ins_alu_op && alu_run && alu_finish;
wire clean_after_config;
assign clean_after_config = alu_active && (phase == 3) && o_bus_config && !alu_run;
always @(posedge i_clk) begin
if (i_reset)
o_bus_config <= 0;
// $display("send_config %b | is_bus_cfg %b | i_ins_cfg %b", send_config, is_bus_config, i_ins_config);
if (send_config && is_bus_config && i_ins_config) begin
$display("ALU %0d - =========================== ALU start configure mode", phase);
o_bus_config <= 1;
end
if (clean_after_config) begin
$display("ALU %0d - --------------------------- ALU end configure mode %b", phase, i_stalled);
o_bus_config <= 0;
end
end
/*****************************************************************************
*
* Handles all changes to PC
*
****************************************************************************/
wire [19:0] next_pc;
wire [19:0] goyes_off;
wire [19:0] goyes_pc;
wire [0:0] is_jmp_rel2;
wire [0:0] is_rtn_rel2;
wire [0:0] jmp_carry_test;
wire [0:0] exec_rtn_rel2;
wire [0:0] set_jmp_rel2;
wire [0:0] exec_jmp_rel2;
wire [0:0] update_pc;
wire [0:0] set_unc_jmp;
wire [0:0] exec_unc_jmp;
wire [0:0] exec_unc_rtn;
wire [0:0] pop_pc;
wire [0:0] reload_pc;
wire [0:0] push_pc;
assign goyes_off = {{12{i_imm_value[3]}}, i_imm_value, jump_off[3:0]};
assign goyes_pc = jump_bse + goyes_off;
// rtnyes is already handled by i_ins_test_go
assign is_rtn_rel2 = (alu_op == `ALU_OP_JMP_REL2) && (goyes_off == 0);
assign is_jmp_rel2 = (alu_op == `ALU_OP_JMP_REL2) && !(goyes_off == 0);
assign jmp_carry_test = (i_test_carry && (CARRY == i_carry_val));
assign exec_rtn_rel2 = is_rtn_rel2 && jmp_carry_test && alu_done;
assign set_jmp_rel2 = is_jmp_rel2 && jmp_carry_test && alu_finish;
assign exec_jmp_rel2 = is_jmp_rel2 && jmp_carry_test && alu_done;
assign set_unc_jmp = is_alu_op_unc_jump && alu_finish;
assign exec_unc_jmp = is_alu_op_unc_jump && alu_done;
assign exec_unc_rtn = i_pop && i_ins_rtn;
assign pop_pc = i_pop && i_ins_rtn &&
((!i_ins_test_go) ||
(i_ins_test_go && CARRY));
assign next_pc = (set_unc_jmp || set_jmp_rel2)?jump_pc:PC + 1;
assign update_pc = !o_alu_stall_dec || exec_unc_jmp || exec_jmp_rel2 || just_reset;
assign reload_pc = (exec_unc_jmp || pop_pc || just_reset || exec_jmp_rel2);
assign push_pc = update_pc && i_push && alu_finish;
always @(posedge i_clk) begin
/*
* initializes the PC
*
*/
if (i_reset) begin
PC <= ~0;
o_bus_load_pc <= 0;
rstk_ptr <= 0;
end
/*
* Similarly to the data registers,
* initializes the RSTK while the PC is first loaded
*
*/
if (alu_initializing)
RSTK[f_cur[2:0]] <= 0;
// necessary for the write to memory above
// otherwise we get a conflict on o_bus_address
if (setup_load_dp)
case (mem_reg[0])
0: o_bus_address <= D0;
1: o_bus_address <= D1;
endcase
// this is moved here for access conflicts to o_bus_address
if (do_alu_save && (alu_op == `ALU_OP_COPY) && (reg_dest == `ALU_REG_ADDR)) begin
o_bus_address[f_cur*4+:4] <= c_res1;
end
/**
*
* Update the PC.
* Request the new PC be loaded to the other modules through
* the bus if necessary
*
*/
if (do_alu_pc) begin
// $display("DO ALU PC");
`ifdef SIM
if (alu_debug_pc)
$display({"ALU_PC 3: !stl %b | nx %5h | done %b | fin %b | ",
"uncjmp %b | ins_rtn %b | push %b | imm %h | ",
"c_test %b | jmpr2 %b | rtn[n]c %b |",
"j_bs %h | go_off %h | go_pc %h | update %b | PC <= %h"},
!o_alu_stall_dec, next_pc, alu_done, alu_finish,
is_alu_op_unc_jump, i_ins_rtn, i_push, i_imm_value,
jmp_carry_test, exec_jmp_rel2, exec_rtn_rel2,
jump_bse, goyes_off, goyes_pc, update_pc, pop_pc ? RSTK[rstk_ptr - 1] : next_pc);
`endif
// this may do wierd things with C=RSTK...
if (update_pc) begin
PC <= pop_pc ? RSTK[rstk_ptr - 1] : next_pc;
end
if (reload_pc) begin
// $display("ALU_PC 3: $$$$ RELOADING PC $$$$");
o_bus_address <= pop_pc ? RSTK[rstk_ptr-1] : next_pc;
o_bus_load_pc <= 1;
end
// $display("pop %b && rtn %b && ((!go %b) || (go %b && c %b))",
// i_pop, i_ins_rtn, !i_ins_test_go, i_ins_test_go, c_carry);
if (pop_pc) begin
$display("POP RSTK[%0d] to PC %5h", rstk_ptr-1, RSTK[rstk_ptr - 1]);
RSTK[rstk_ptr - 1] <= 0;
rstk_ptr <= rstk_ptr - 1;
end
if (push_pc) begin
$display("PUSH PC %5h to RSTK[%0d]", PC, rstk_ptr);
RSTK[rstk_ptr] <= PC;
rstk_ptr <= rstk_ptr + 1;
end
end
/*
*
* Deactivate the load_pc or load_dp enables on the next clock
*
*/
if (do_busclean && o_bus_load_pc)
o_bus_load_pc <= 0;
end
/*****************************************************************************
*
* execute SETHEX and SETDEC
*
****************************************************************************/
always @(posedge i_clk) begin
if (i_reset)
DEC <= 0;
// changing calculation modes
if (do_alu_mode) begin
$display("SETTING MODE TO %s", i_mode_dec?"DEC":"HEX");
DEC <= i_mode_dec;
end
end
endmodule
`endif