hp-saturn/saturn_control_unit.v
2019-03-14 13:45:14 +01:00

736 lines
24 KiB
Verilog

/*
(c) Raphaël Jacquot 2019
This file is part of hp_saturn.
hp_saturn is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
any later version.
hp_saturn is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Foobar. If not, see <https://www.gnu.org/licenses/>.
*/
`default_nettype none
`include "saturn_def_buscmd.v"
`include "saturn_def_alu.v"
module saturn_control_unit (
i_clk,
i_clk_en,
i_reset,
i_phases,
i_phase,
i_cycle_ctr,
i_bus_busy,
o_program_data,
o_program_address,
i_program_address,
o_no_read,
i_nibble,
o_error,
/* alu is busy doing something */
o_alu_busy,
/* debugger interface */
o_current_pc,
o_reg_alu_mode,
o_reg_carry,
o_reg_p,
o_reg_hst,
o_reg_st,
/* register access */
i_dbg_register,
i_dbg_reg_ptr,
o_dbg_reg_nibble,
i_dbg_rstk_ptr,
o_dbg_rstk_val,
o_reg_rstk_ptr,
o_alu_reg_dest,
o_alu_reg_src_1,
o_alu_reg_src_2,
o_alu_imm_value,
o_alu_opcode,
o_instr_type,
o_instr_decoded,
o_instr_execute
);
input wire [0:0] i_clk;
input wire [0:0] i_clk_en;
input wire [0:0] i_reset;
input wire [3:0] i_phases;
input wire [1:0] i_phase;
input wire [31:0] i_cycle_ctr;
input wire [0:0] i_bus_busy;
output wire [4:0] o_program_data;
output wire [4:0] o_program_address;
input wire [4:0] i_program_address;
output reg [0:0] o_no_read;
input wire [3:0] i_nibble;
output wire [0:0] o_error;
assign o_error = control_unit_error || dec_error;
output wire [0:0] o_alu_busy;
assign o_alu_busy = inst_alu_other || alu_start;
/* debugger interface */
output wire [19:0] o_current_pc;
output wire [0:0] o_reg_alu_mode;
output wire [0:0] o_reg_carry;
output wire [3:0] o_reg_p;
output wire [3:0] o_reg_hst;
output wire [15:0] o_reg_st;
/* register access */
input wire [4:0] i_dbg_register;
input wire [3:0] i_dbg_reg_ptr;
output reg [3:0] o_dbg_reg_nibble;
input wire [2:0] i_dbg_rstk_ptr;
output wire [19:0] o_dbg_rstk_val;
output wire [2:0] o_reg_rstk_ptr;
output wire [4:0] o_alu_reg_dest;
output wire [4:0] o_alu_reg_src_1;
output wire [4:0] o_alu_reg_src_2;
output wire [3:0] o_alu_imm_value;
output wire [4:0] o_alu_opcode;
output wire [3:0] o_instr_type;
output wire [0:0] o_instr_decoded;
output wire [0:0] o_instr_execute;
assign o_current_pc = reg_PC;
assign o_reg_alu_mode = reg_alu_mode;
assign o_reg_carry = reg_CARRY;
assign o_reg_p = reg_P;
assign o_reg_hst = reg_HST;
assign o_reg_st = reg_ST;
assign o_alu_reg_dest = dec_alu_reg_dest;
assign o_alu_reg_src_1 = dec_alu_reg_src_1;
assign o_alu_reg_src_2 = dec_alu_reg_src_2;
assign o_alu_imm_value = dec_alu_imm_value;
assign o_alu_opcode = dec_alu_opcode;
assign o_instr_type = dec_instr_type;
assign o_instr_decoded = dec_instr_decoded;
assign o_instr_execute = dec_instr_execute;
/**************************************************************************************************
*
* decoder module
*
*************************************************************************************************/
saturn_inst_decoder instruction_decoder(
.i_clk (i_clk),
.i_clk_en (i_clk_en),
.i_reset (i_reset),
.i_phases (i_phases),
.i_phase (i_phase),
.i_cycle_ctr (i_cycle_ctr),
.i_bus_busy (i_bus_busy),
.i_alu_busy (o_alu_busy),
.i_nibble (i_nibble),
.i_reg_p (reg_P),
.i_current_pc (reg_PC),
.o_alu_reg_dest (dec_alu_reg_dest),
.o_alu_reg_src_1 (dec_alu_reg_src_1),
.o_alu_reg_src_2 (dec_alu_reg_src_2),
.o_alu_ptr_begin (dec_alu_ptr_begin),
.o_alu_ptr_end (dec_alu_ptr_end),
.o_alu_imm_value (dec_alu_imm_value),
.o_alu_opcode (dec_alu_opcode),
.o_jump_length (dec_jump_length),
.o_block_0x (dec_block_0x),
.o_instr_type (dec_instr_type),
.o_push_pc (dec_push_pc),
.o_instr_decoded (dec_instr_decoded),
.o_instr_execute (dec_instr_execute),
.o_decoder_error (dec_error)
);
wire [4:0] dec_alu_reg_dest;
wire [4:0] dec_alu_reg_src_1;
wire [4:0] dec_alu_reg_src_2;
wire [3:0] dec_alu_ptr_begin;
wire [3:0] dec_alu_ptr_end;
wire [3:0] dec_alu_imm_value;
wire [4:0] dec_alu_opcode;
wire [2:0] dec_jump_length;
/* this is necessary to identify possible RTN in time */
wire [0:0] dec_block_0x;
wire [3:0] dec_instr_type;
wire [0:0] dec_push_pc;
wire [0:0] dec_instr_decoded;
wire [0:0] dec_instr_execute;
wire [0:0] dec_error;
/*
* wires for decode shortcuts
*/
wire [0:0] inst_alu = (dec_instr_type == `INSTR_TYPE_ALU);
wire [0:0] inst_jump = (dec_instr_type == `INSTR_TYPE_JUMP);
wire [0:0] inst_rtn = (dec_instr_type == `INSTR_TYPE_RTN);
wire [0:0] reg_dest_c = (dec_alu_reg_dest == `ALU_REG_C);
wire [0:0] reg_dest_hst = (dec_alu_reg_dest == `ALU_REG_HST);
wire [0:0] reg_dest_st = (dec_alu_reg_dest == `ALU_REG_ST);
wire [0:0] reg_dest_p = (dec_alu_reg_dest == `ALU_REG_P);
wire [0:0] reg_src_1_p = (dec_alu_reg_src_1 == `ALU_REG_P);
wire [0:0] reg_src_1_imm = (dec_alu_reg_src_1 == `ALU_REG_IMM);
wire [0:0] aluop_zero = inst_alu && (dec_alu_opcode == `ALU_OP_ZERO);
wire [0:0] aluop_copy = inst_alu && (dec_alu_opcode == `ALU_OP_COPY);
wire [0:0] aluop_clr_mask = inst_alu && (dec_alu_opcode == `ALU_OP_CLR_MASK);
wire [0:0] inst_alu_p_eq_n = aluop_copy && reg_dest_p && reg_src_1_imm;
wire [0:0] inst_alu_c_eq_p_n = aluop_copy && reg_dest_c && reg_src_1_p;
wire [0:0] inst_alu_clrhst_n = aluop_clr_mask && reg_dest_hst && reg_src_1_imm;
wire [0:0] inst_alu_st_eq_01_n = aluop_copy && reg_dest_st && reg_src_1_imm;
wire [0:0] inst_alu_other = inst_alu &&
!(inst_alu_p_eq_n ||
inst_alu_c_eq_p_n ||
inst_alu_clrhst_n ||
inst_alu_st_eq_01_n
);
/**************************************************************************************************
*
* PC and RSTK module
*
*************************************************************************************************/
saturn_regs_pc_rstk regs_pc_rstk (
.i_clk (i_clk),
.i_clk_en (i_clk_en),
.i_reset (i_reset),
.i_phases (i_phases),
.i_phase (i_phase),
.i_cycle_ctr (i_cycle_ctr),
.i_bus_busy (i_bus_busy),
.i_alu_busy (o_alu_busy),
.i_nibble (i_nibble),
.i_jump_instr (inst_jump),
.i_jump_length (dec_jump_length),
.i_block_0x (dec_block_0x),
.i_push_pc (dec_push_pc),
.i_rtn_instr (inst_rtn),
.o_current_pc (reg_PC),
.o_reload_pc (reload_PC),
.i_dbg_rstk_ptr (i_dbg_rstk_ptr),
.o_dbg_rstk_val (o_dbg_rstk_val),
.o_reg_rstk_ptr (o_reg_rstk_ptr)
);
/**************************************************************************************************
*
* Processor registers
*
*************************************************************************************************/
reg [0:0] reg_alu_mode;
reg [0:0] reg_CARRY;
reg [3:0] reg_A[0:15];
reg [3:0] reg_B[0:15];
reg [3:0] reg_C[0:15];
reg [3:0] reg_D[0:15];
reg [3:0] reg_D0[0:4];
reg [3:0] reg_D1[0:4];
reg [3:0] reg_HST;
reg [15:0] reg_ST;
reg [3:0] reg_P;
wire [19:0] reg_PC;
/**************************************************************************************************
*
* ALU module
*
*************************************************************************************************/
saturn_alu_module alu_module (
.i_clk (i_clk),
.i_clk_en (i_clk_en),
.i_reset (i_reset),
.i_phases (i_phases),
.i_phase (i_phase),
.i_cycle_ctr (i_cycle_ctr),
.i_opcode (alu_opcode),
.i_ptr_begin (alu_ptr_begin),
.i_ptr_end (alu_ptr_end),
.i_run (alu_run),
.i_done (alu_done),
.i_prep_src_1_val (alu_prep_src_1_val),
.i_prep_src_2_val (alu_prep_src_2_val),
.i_prep_carry (alu_prep_carry),
.i_calc_pos (alu_calc_pos),
.o_calc_res_1_val (alu_calc_res_1_val),
.o_calc_res_2_val (alu_calc_res_2_val),
.o_calc_carry (alu_calc_carry)
);
/*
* ALU control variable
*/
reg [0:0] alu_start;
reg [4:0] alu_opcode;
reg [4:0] alu_reg_dest;
reg [4:0] alu_reg_src_1;
reg [4:0] alu_reg_src_2;
reg [3:0] alu_ptr_begin;
reg [3:0] alu_ptr_end;
reg [0:0] alu_prep_run;
reg [3:0] alu_prep_pos;
reg [3:0] alu_prep_src_1_val;
reg [3:0] alu_prep_src_2_val;
reg [0:0] alu_prep_carry;
reg [0:0] alu_prep_done;
reg [0:0] alu_calc_run;
reg [3:0] alu_calc_pos;
wire [3:0] alu_calc_res_1_val;
wire [3:0] alu_calc_res_2_val;
wire [0:0] alu_calc_carry;
reg [0:0] alu_calc_done;
reg [0:0] alu_save_run;
reg [3:0] alu_save_pos;
reg [0:0] alu_save_done;
reg [3:0] alu_imm_value;
wire [0:0] alu_run = alu_calc_run || alu_save_run;
wire [0:0] alu_done = alu_calc_done || alu_save_done;
/*
* should we reload the PC after it has been changed
*/
wire [0:0] reload_PC;
always @(i_dbg_register, i_dbg_reg_ptr) begin
case (i_dbg_register)
`ALU_REG_A: o_dbg_reg_nibble = reg_A[i_dbg_reg_ptr];
`ALU_REG_B: o_dbg_reg_nibble = reg_B[i_dbg_reg_ptr];
`ALU_REG_C: o_dbg_reg_nibble = reg_C[i_dbg_reg_ptr];
`ALU_REG_D: o_dbg_reg_nibble = reg_D[i_dbg_reg_ptr];
`ALU_REG_D0: o_dbg_reg_nibble = reg_D0[i_dbg_reg_ptr];
`ALU_REG_D1: o_dbg_reg_nibble = reg_D1[i_dbg_reg_ptr];
default: o_dbg_reg_nibble = 4'h0;
endcase
end
/**************************************************************************************************
*
* the control unit
*
*************************************************************************************************/
reg [0:0] control_unit_error;
reg [0:0] just_reset;
reg [3:0] init_counter;
reg [0:0] control_unit_ready;
reg [4:0] bus_program[0:31];
reg [4:0] bus_prog_addr;
reg [2:0] addr_nibble_ptr;
reg [0:0] load_pc_loop;
reg [0:0] send_reg_C_A;
reg [0:0] send_pc_read;
wire [3:0] reg_PC_nibble = reg_PC[addr_nibble_ptr*4+:4];
assign o_program_data = bus_program[i_program_address];
assign o_program_address = bus_prog_addr;
initial begin
/* control variables */
o_no_read = 1'b0;
control_unit_error = 1'b0;
just_reset = 1'b1;
init_counter = 4'b0;
control_unit_ready = 1'b0;
bus_prog_addr = 5'd0;
addr_nibble_ptr = 3'd0;
load_pc_loop = 1'b0;
send_reg_C_A = 1'b0;
send_pc_read = 1'b0;
/* alu control signals */
alu_start = 1'b0;
/* registers */
reg_alu_mode = 1'b0;
reg_CARRY = 1'b0;
reg_HST = 4'b0;
reg_ST = 16'b0;
reg_P = 4'b0;
end
always @(posedge i_clk) begin
if (just_reset || (init_counter != 0)) begin
$display("CTRL %0d: [%d] initializing registers %0d", i_phase, i_cycle_ctr, init_counter);
reg_A[init_counter] <= 4'h0;
reg_B[init_counter] <= 4'h0;
reg_C[init_counter] <= 4'h0;
reg_D[init_counter] <= 4'h0;
reg_D0[init_counter] <= 4'h0;
reg_D1[init_counter] <= 4'h0;
init_counter <= init_counter + 4'b1;
end
/************************
*
* we're just starting, load the PC into the controller and modules
* this could also be used when loading the PC on jumps, need to identify conditions
*
*/
if (i_clk_en && (just_reset || reload_PC) && i_phases[3]) begin
/* this happend right after reset */
if (just_reset) begin
`ifdef SIM
$display("CTRL %0d: [%d] we were just reset, loading PC", i_phase, i_cycle_ctr);
`endif
just_reset <= 1'b0;
end else begin
`ifdef SIM
$display("CTRL %0d: [%d] reloading PC", i_phase, i_cycle_ctr);
`endif
end
/* this loads the PC to the modules */
bus_program[bus_prog_addr] <= {1'b1, `BUSCMD_LOAD_PC };
`ifdef SIM
$display("CTRL %0d: [%d] pushing LOAD_PC command to pos %d", i_phase, i_cycle_ctr, bus_prog_addr);
`endif
addr_nibble_ptr <= 3'b0;
bus_prog_addr <= bus_prog_addr + 5'd1;
load_pc_loop <= 1'b1;
end
/* loop to fill the initial PC value in the program */
if (i_clk_en && load_pc_loop) begin
/*
* this should load the actual PC values...
*/
bus_program[bus_prog_addr] <= {1'b0, reg_PC_nibble };
addr_nibble_ptr <= addr_nibble_ptr + 3'd1;
bus_prog_addr <= bus_prog_addr + 5'd1;
`ifdef SIM
if (addr_nibble_ptr == 3'd0)
$display("CTRL %0d: [%d] new PC value %5h", i_phase, i_cycle_ctr, reg_PC);
$write("CTRL %0d: [%d] pushing ADDR : prog[%2d] <= PC[%0d] (%h)", i_phase, i_cycle_ctr,
bus_prog_addr, addr_nibble_ptr, {1'b0, reg_PC_nibble });
`endif
if (addr_nibble_ptr == 3'd4) begin
load_pc_loop <= 1'b0;
control_unit_ready <= 1'b1;
`ifdef SIM
$write(" done");
`endif
end
`ifdef SIM
$write("\n");
`endif
end
/************************
*
* main execution loop
*
*/
if (i_clk_en && control_unit_ready && !i_bus_busy) begin
// `ifdef SIM
// $display("CTRL %0d: [%d] starting to do things", i_phase, i_cycle_ctr);
// `endif
// if (i_phases[2]) begin
// $display("CTRL %0d: [%d] interpreting %h", i_phase, i_cycle_ctr, i_nibble);
// end
if (i_phases[3] && dec_instr_execute) begin
case (dec_instr_type)
`INSTR_TYPE_NOP: begin
$display("CTRL %0d: [%d] NOP instruction", i_phase, i_cycle_ctr);
end
`INSTR_TYPE_ALU: begin
$display("CTRL %0d: [%d] ALU instruction", i_phase, i_cycle_ctr);
/*
* treat special cases
*/
/* 2n P= n */
if (inst_alu_p_eq_n) begin
$display("CTRL %0d: [%d] exec : P= %h", i_phase, i_cycle_ctr, dec_alu_imm_value);
reg_P <= dec_alu_imm_value;
end
/* 80Cn C=P n */
if (inst_alu_c_eq_p_n) begin
reg_C[dec_alu_ptr_begin] <= reg_P;
end
if (inst_alu_clrhst_n) begin
`ifdef SIM
$write("CTRL %0d: [%d] exec : ", i_phase, i_cycle_ctr);
case (dec_alu_imm_value)
4'h1: $display("XM=0");
4'h2: $display("SB=0");
4'h4: $display("SR=0");
4'h8: $display("MP=0");
4'hF: $display("CLRHST");
default: $display("CLRHST %h", dec_alu_imm_value);
endcase
`endif
reg_HST <= reg_HST & ~dec_alu_imm_value;
end
/* 8[45]n ST=[01] n */
if (inst_alu_st_eq_01_n) begin
$display("CTRL %0d: [%d] exec : ST=%b %h", i_phase, i_cycle_ctr, dec_alu_imm_value[0], dec_alu_ptr_begin);
reg_ST[dec_alu_ptr_begin] <= dec_alu_imm_value[0];
end
/*
* the general case
*/
if (inst_alu_other) begin
$display("CTRL %0d: [%d] exec : generic ALU operation", i_phase, i_cycle_ctr);
alu_start <= 1'b1;
alu_opcode <= dec_alu_opcode;
alu_reg_dest <= dec_alu_reg_dest;
alu_reg_src_1 <= dec_alu_reg_src_1;
alu_reg_src_2 <= dec_alu_reg_src_2;
alu_ptr_begin <= dec_alu_ptr_begin;
alu_ptr_end <= dec_alu_ptr_end;
alu_prep_pos <= dec_alu_ptr_begin;
alu_calc_pos <= dec_alu_ptr_begin;
alu_save_pos <= dec_alu_ptr_begin;
alu_imm_value <= dec_alu_imm_value;
alu_prep_done <= 1'b0;
alu_calc_done <= 1'b0;
alu_save_done <= 1'b0;
if (aluop_zero) alu_save_run <= 1'b1;
else alu_prep_run <= 1'b1;
end
end
`INSTR_TYPE_SET_MODE :
begin
`ifdef SIM
$write("CTRL %0d: [%d] exec : ", i_phase, i_cycle_ctr);
case (dec_alu_imm_value)
4'h0: $display("SETHEX");
4'h1: $display("SETDEC");
default: begin end /* does not exist */
endcase
`endif
reg_alu_mode <= dec_alu_imm_value[0];
end
`INSTR_TYPE_JUMP: begin end
`INSTR_TYPE_RTN:
begin
case (dec_alu_opcode)
`ALU_OP_SET_CRY: reg_CARRY <= o_alu_imm_value[0];
default:
begin
$display("CTRL %0d: [%d] alu_opcode for RTN %0d", i_phase, i_cycle_ctr, dec_alu_opcode);
control_unit_error <= 1'b1;
end
endcase
end
`INSTR_TYPE_LOAD:
begin
case (dec_alu_reg_dest)
`ALU_REG_C: reg_C[dec_alu_ptr_begin] <= dec_alu_imm_value;
`ALU_REG_D0: reg_D0[dec_alu_ptr_begin] <= dec_alu_imm_value;
default:
begin
$display("CTRL %0d: [%d] unsupported register for load %0d", i_phase, i_cycle_ctr, dec_alu_reg_dest);
control_unit_error <= 1'b1;
end
endcase
end
`INSTR_TYPE_CONFIG:
begin
$display("CTRL %0d: [%d] exec : CONFIG", i_phase, i_cycle_ctr);
bus_program[bus_prog_addr] <= {1'b1, `BUSCMD_CONFIGURE };
bus_prog_addr <= bus_prog_addr + 5'd1;
addr_nibble_ptr <= 3'b0;
send_reg_C_A <= 1'b1;
end
`INSTR_TYPE_RESET:
begin
$display("CTRL %0d: [%d] exec : RESET", i_phase, i_cycle_ctr);
bus_program[bus_prog_addr] <= {1'b1, `BUSCMD_RESET };
bus_prog_addr <= bus_prog_addr + 5'd1;
send_pc_read <= 1'b1;
end
default:
begin
$display("CTRL %0d: [%d] unsupported instruction", i_phase, i_cycle_ctr);
control_unit_error <= 1'b1;
end
endcase
end
/*
* send C(A)
* used for CONFIG and UNCNFG
*/
if (send_reg_C_A) begin
bus_program[bus_prog_addr] <= { 1'b0, reg_C[{1'b0, addr_nibble_ptr}]};
addr_nibble_ptr <= addr_nibble_ptr + 3'd1;
bus_prog_addr <= bus_prog_addr + 5'd1;
if (addr_nibble_ptr == 3'd4) begin
addr_nibble_ptr <= 3'd0;
send_pc_read <= 1'b1;
send_reg_C_A <= 1'b0;
end
end
/*
* sends the PC_READ command to restore devices after some other bus command
*/
if (send_pc_read) begin
$display("CTRL %0d: [%d] exec : RESET - send PC_READ", i_phase, i_cycle_ctr);
bus_program[bus_prog_addr] <= {1'b1, `BUSCMD_PC_READ };
bus_prog_addr <= bus_prog_addr + 5'd1;
send_pc_read <= 1'b0;
end
/******************************************************************************************
*
* ALU control
*
*****************************************************************************************/
if (alu_start && alu_prep_run && !alu_prep_done) begin
$display("ALU_PREP %0d: [%d] b %h | p %h | e %h", i_phase, i_cycle_ctr, alu_ptr_begin, alu_prep_pos, alu_ptr_end);
if (alu_prep_pos == alu_ptr_end) begin
alu_prep_done <= 1'b1;
alu_prep_run <= 1'b0;
end
alu_prep_pos <= alu_prep_pos + 4'h1;
end
if (alu_start && alu_calc_run && !alu_calc_done) begin
$display("ALU_CALC %0d: [%d] b %h | p %h | e %h", i_phase, i_cycle_ctr, alu_ptr_begin, alu_calc_pos, alu_ptr_end);
if (alu_calc_pos == alu_ptr_end) begin
alu_calc_done <= 1'b1;
alu_calc_run <= 1'b0;
end
alu_calc_pos <= alu_calc_pos + 4'h1;
end
if (alu_start && alu_save_run && !alu_save_done) begin
$display("ALU_SAVE %0d: [%d] b %h | p %h | e %h | r1 %h | r2 %h | c %b",
i_phase, i_cycle_ctr,
alu_ptr_begin, alu_save_pos, alu_ptr_end,
alu_calc_res_1_val, alu_calc_res_2_val, alu_calc_carry);
case (alu_reg_dest)
`ALU_REG_C: reg_C[alu_save_pos] <= alu_calc_res_1_val;
default: $display("ALU_SAVE %0d: [%d] dest register %0d not supported", i_phase, i_cycle_ctr, alu_reg_dest);
endcase
if (alu_save_pos == alu_ptr_end) begin
alu_save_done <= 1'b1;
alu_save_run <= 1'b0;
end
alu_save_pos <= alu_save_pos + 4'h1;
end
if (i_phases[2] && alu_start && alu_save_done) begin
$display("CTRL %0d: [%d] end of ALU operation", i_phase, i_cycle_ctr);
alu_start <= 1'b0;
end
if (i_phases[3] && !alu_start) begin
$display("CTRL %0d: [%d] ALU is not started", i_phase, i_cycle_ctr);
end
end
if (i_reset) begin
/* control variables */
o_no_read <= 1'b0;
control_unit_error <= 1'b0;
just_reset <= 1'b1;
init_counter <= 4'b0;
control_unit_ready <= 1'b0;
bus_prog_addr <= 5'd0;
addr_nibble_ptr <= 3'd0;
load_pc_loop <= 1'b0;
send_reg_C_A <= 1'b0;
send_pc_read <= 1'b0;
/* alu control signals */
alu_start <= 1'b0;
/* registers */
reg_alu_mode <= 1'b0;
reg_CARRY <= 1'b0;
reg_HST <= 4'b0;
reg_ST <= 16'b0;
reg_P <= 4'b0;
end
end
endmodule