mirror of
https://gitlab.cs.washington.edu/fidelp/frustration.git
synced 2025-01-13 08:01:23 +01:00
Supersede the old version.
This commit is contained in:
parent
342490230a
commit
e227bfadb1
5 changed files with 420 additions and 994 deletions
39
README.md
39
README.md
|
@ -1,41 +1,2 @@
|
|||
Forth in Rust.
|
||||
|
||||
FRUSTRATION has got a foot standing on its own tail because writing a
|
||||
monolithic outer interpreter in a high level language makes it really
|
||||
annoying to monkey with the functioning of the interpreter from within
|
||||
the language it's interpreting. PARSE/WORD and the input stream
|
||||
handling was the first place this became obvious. This design is a
|
||||
dead end. The path forward would be stripping it back to primitives
|
||||
and rewriting the outer interpreter in Forth.
|
||||
|
||||
Here are things it can do today:
|
||||
|
||||
Print some terms of the fibonacci sequence:
|
||||
```
|
||||
: over >r dup r> swap ;
|
||||
: fib recursive r> drop over + swap dup . dup 144 - ? fib ;
|
||||
: fib 1 0 fib ;
|
||||
|
||||
fib
|
||||
1 1 2 3 5 8 13 21 34 55 89 144 ok
|
||||
```
|
||||
|
||||
Compute the number of cans in a triangular stack of height n.
|
||||
For example a stack of height 3 contains 6 cans.
|
||||
```
|
||||
x
|
||||
x x
|
||||
x x x
|
||||
```
|
||||
|
||||
```
|
||||
variable cans
|
||||
: c recursive r> drop dup cans @ + cans ! 1 - dup ? c ;
|
||||
: c c ;
|
||||
: can-stack 0 cans ! c cans @ ;
|
||||
|
||||
3 can-stack .
|
||||
6 ok
|
||||
10 can-stack .
|
||||
55 ok
|
||||
```
|
||||
|
|
2
build.sh
2
build.sh
|
@ -1 +1 @@
|
|||
rustc frustration2.rs && cat frustration2.fs - | ./frustration2
|
||||
rustc frustration.rs && cat frustration.fs - | ./frustration
|
||||
|
|
933
frustration.rs
933
frustration.rs
|
@ -1,535 +1,490 @@
|
|||
/* --- The virtual CPU ---
|
||||
*/
|
||||
|
||||
use std::io;
|
||||
use std::io::Read;
|
||||
use std::io::Write;
|
||||
use std::convert::TryInto;
|
||||
|
||||
#[derive(Debug, Eq, PartialEq)]
|
||||
enum State {
|
||||
Compiling,
|
||||
Interpreting
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
enum Post {
|
||||
Nothing,
|
||||
EatWord,
|
||||
WarmReset,
|
||||
}
|
||||
|
||||
const ADDRESS_SPACE: usize = 65535;
|
||||
const STACK_WORDS: usize = 16;
|
||||
const RAM_BYTES: usize = ADDRESS_SPACE - 2*2*STACK_WORDS;
|
||||
|
||||
#[derive(Debug)]
|
||||
struct Stack<const N: usize> {
|
||||
mem: [u16; N],
|
||||
tos: usize
|
||||
}
|
||||
|
||||
impl<const N: usize> Stack<N> {
|
||||
fn push(&mut self, val: u16) {
|
||||
self.tos = (self.tos.wrapping_add(1)) & (N - 1);
|
||||
self.mem[self.tos] = val;
|
||||
}
|
||||
|
||||
fn pop(&mut self) -> u16 {
|
||||
let val = self.mem[self.tos];
|
||||
self.mem[self.tos] = 0;
|
||||
self.tos = (self.tos.wrapping_sub(1)) & (N - 1);
|
||||
return val;
|
||||
}
|
||||
}
|
||||
|
||||
struct Core {
|
||||
ram: [u8; RAM_BYTES],
|
||||
ram: [u8; ADDRESS_SPACE],
|
||||
ip: u16,
|
||||
dp: u16, // newest link field, or 0
|
||||
here: u16, // first unused byte
|
||||
state: State,
|
||||
next_token: Option<String>,
|
||||
post: Post,
|
||||
dstack: [u16; STACK_WORDS],
|
||||
tds: usize, // post-incremented; exceeds top by one
|
||||
rstack: [u16; STACK_WORDS],
|
||||
trs: usize, // post-incremented; exceeds top by one
|
||||
dstack: Stack<32>,
|
||||
rstack: Stack<32>
|
||||
}
|
||||
|
||||
fn new_core() -> Core {
|
||||
let c = Core {
|
||||
ram: [0; ADDRESS_SPACE],
|
||||
ip: 0,
|
||||
dstack: Stack {tos: 0, mem: [0; 32]},
|
||||
rstack: Stack {tos: 0, mem: [0; 32]}};
|
||||
return c;
|
||||
}
|
||||
|
||||
impl Core {
|
||||
fn load(&self, addr: u16) -> u16 {
|
||||
let a = addr as usize;
|
||||
return u16::from_le_bytes(self.ram[a..=a+1].try_into().unwrap());
|
||||
}
|
||||
|
||||
fn store(&mut self, addr: u16, val: u16) {
|
||||
let a = addr as usize;
|
||||
self.ram[a..=a+1].copy_from_slice(&val.to_le_bytes());
|
||||
}
|
||||
|
||||
fn step(&mut self) {
|
||||
let opcode = self.load(self.ip);
|
||||
self.ip = self.ip.wrapping_add(2);
|
||||
if (opcode >= 0xffe0) && (opcode & 1 == 0) {
|
||||
PRIMITIVES[((opcode - 0xffe0) >> 1) as usize](self);
|
||||
}
|
||||
else if (opcode & 1) == 1 {
|
||||
// Literal
|
||||
self.dstack.push(opcode >> 1);
|
||||
}
|
||||
else {
|
||||
// Call
|
||||
self.rstack.push(self.ip);
|
||||
self.ip = opcode;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
type Primitive = fn(&mut Core);
|
||||
|
||||
struct ShortName {
|
||||
bytes: [u8; 3],
|
||||
length: u8
|
||||
enum Op {
|
||||
RET = 0xffe0, TOR = 0xffe2, RTO = 0xffe4, LD = 0xffe6,
|
||||
ST = 0xffe8, DUP = 0xffea, SWP = 0xffec, DRP = 0xffee,
|
||||
Q = 0xfff0, ADD = 0xfff2, SFT = 0xfff4, OR = 0xfff6,
|
||||
AND = 0xfff8, INV = 0xfffa, GEQ = 0xfffc, IO = 0xfffe,
|
||||
}
|
||||
|
||||
fn truncate_name(name: &str) -> ShortName {
|
||||
let name_bytes = name.as_bytes();
|
||||
let mut out = ShortName {
|
||||
bytes: *b" ",
|
||||
length: name_bytes.len() as u8 };
|
||||
let n = std::cmp::min(3, out.length) as usize;
|
||||
out.bytes[0..n].copy_from_slice(&name_bytes[0..n]);
|
||||
return out;
|
||||
}
|
||||
|
||||
struct TableEntry {
|
||||
f: Primitive,
|
||||
name: Option<ShortName>,
|
||||
immediate: bool
|
||||
}
|
||||
|
||||
const PRIMITIVES: [TableEntry; 31] = [
|
||||
TableEntry {f: ret , name: None, immediate: false},
|
||||
TableEntry {f: lit , name: None, immediate: false},
|
||||
TableEntry {f: add , name: Some(ShortName {bytes: *b"+ ", length: 1}), immediate: false},
|
||||
TableEntry {f: call , name: Some(ShortName {bytes: *b"cal", length: 4}), immediate: false},
|
||||
TableEntry {f: comma_d , name: Some(ShortName {bytes: *b", ", length: 1}), immediate: false},
|
||||
TableEntry {f: create_d, name: Some(ShortName {bytes: *b"cre", length: 6}), immediate: false},
|
||||
TableEntry {f: div , name: Some(ShortName {bytes: *b"/ ", length: 1}), immediate: false},
|
||||
TableEntry {f: dot , name: Some(ShortName {bytes: *b". ", length: 1}), immediate: false},
|
||||
TableEntry {f: dots , name: Some(ShortName {bytes: *b".s ", length: 2}), immediate: false},
|
||||
TableEntry {f: drop , name: Some(ShortName {bytes: *b"dro", length: 4}), immediate: false},
|
||||
TableEntry {f: dup , name: Some(ShortName {bytes: *b"dup", length: 3}), immediate: false},
|
||||
TableEntry {f: dump , name: Some(ShortName {bytes: *b"dum", length: 4}), immediate: false},
|
||||
TableEntry {f: forget , name: Some(ShortName {bytes: *b"for", length: 6}), immediate: false},
|
||||
TableEntry {f: from_r_d, name: Some(ShortName {bytes: *b"r> ", length: 2}), immediate: false},
|
||||
TableEntry {f: here , name: Some(ShortName {bytes: *b"her", length: 4}), immediate: false},
|
||||
TableEntry {f: if_skip ,name: Some(ShortName {bytes: *b"? ", length: 1}), immediate: false},
|
||||
TableEntry {f: immediate,name: Some(ShortName {bytes: *b"imm", length: 9}), immediate: false},
|
||||
TableEntry {f: latest , name: Some(ShortName {bytes: *b"lat", length: 6}), immediate: false},
|
||||
TableEntry {f: lbracket, name: Some(ShortName {bytes: *b"[ ", length: 1}), immediate: true},
|
||||
TableEntry {f: load , name: Some(ShortName {bytes: *b"@ ", length: 1}), immediate: false},
|
||||
TableEntry {f: mul , name: Some(ShortName {bytes: *b"* ", length: 1}), immediate: false},
|
||||
TableEntry {f: ret_d , name: Some(ShortName {bytes: *b"ret", length: 3}), immediate: false},
|
||||
TableEntry {f: rbracket, name: Some(ShortName {bytes: *b"] ", length: 1}), immediate: false},
|
||||
TableEntry {f: smudge , name: Some(ShortName {bytes: *b"smu", length: 6}), immediate: false},
|
||||
TableEntry {f: store , name: Some(ShortName {bytes: *b"! ", length: 1}), immediate: false},
|
||||
TableEntry {f: sub , name: Some(ShortName {bytes: *b"- ", length: 1}), immediate: false},
|
||||
TableEntry {f: swap , name: Some(ShortName {bytes: *b"swa", length: 4}), immediate: false},
|
||||
TableEntry {f: tick , name: Some(ShortName {bytes: *b"' ", length: 1}), immediate: false},
|
||||
TableEntry {f: to_r_d , name: Some(ShortName {bytes: *b">r ", length: 2}), immediate: false},
|
||||
TableEntry {f: unsmudge, name: Some(ShortName {bytes: *b"uns", length: 8}), immediate: false},
|
||||
TableEntry {f: word , name: Some(ShortName {bytes: *b"wor", length: 4}), immediate: false}
|
||||
];
|
||||
|
||||
fn new_core() -> Core {
|
||||
let mut c = Core {
|
||||
ram: [0; RAM_BYTES], ip: 0, dp: 0, here: 2, state: State::Interpreting,
|
||||
next_token: None,
|
||||
post: Post::Nothing,
|
||||
dstack: [0; STACK_WORDS], tds: 0,
|
||||
rstack: [0; STACK_WORDS], trs: 0 };
|
||||
init_dictionary(&mut c);
|
||||
|
||||
let autoexec = [
|
||||
"create : ] create smudge ] [ 65535 ,",
|
||||
"create ; ] unsmudge 65535 , [ ' [ , 65535 , immediate",
|
||||
": recursive unsmudge ; immediate",
|
||||
": literal 65534 , , ; immediate",
|
||||
": constant create [ ' literal , ] [ ' ret ] literal , ;",
|
||||
": variable create here 6 + [ ' literal , ] [ ' ret ] literal , 0 , ;"
|
||||
];
|
||||
|
||||
for s in autoexec {
|
||||
outer(&mut c, s);
|
||||
}
|
||||
|
||||
return c;
|
||||
}
|
||||
|
||||
// --- Dictionary management ---
|
||||
|
||||
fn init_dictionary(c: &mut Core) {
|
||||
let mut opcode = 65535;
|
||||
for p in PRIMITIVES {
|
||||
match p.name {
|
||||
Some(name) => {
|
||||
create(c, name);
|
||||
if p.immediate {
|
||||
immediate(c);
|
||||
}
|
||||
comma(c, opcode);
|
||||
comma(c, 65535); // ret
|
||||
}
|
||||
None => {}
|
||||
}
|
||||
opcode -= 1;
|
||||
}
|
||||
}
|
||||
|
||||
fn create(c: &mut Core, name: ShortName) {
|
||||
let addr: usize = c.here as usize;
|
||||
c.ram[addr+0..=addr+1].copy_from_slice(&c.dp.to_le_bytes());
|
||||
c.dp = addr as u16;
|
||||
c.ram[addr+2] = name.length & 0x7f;
|
||||
c.ram[addr+3..=addr+5].copy_from_slice(&name.bytes);
|
||||
c.here = (addr+6) as u16;
|
||||
}
|
||||
|
||||
fn create_d(c: &mut Core) {
|
||||
match &c.next_token {
|
||||
Some(t) => {
|
||||
let short_name = truncate_name(t);
|
||||
create(c, short_name);
|
||||
c.post = Post::EatWord;
|
||||
}
|
||||
_ => {
|
||||
println!(" create needs an argument");
|
||||
c.post = Post::WarmReset;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn find(c: &mut Core, name: ShortName) -> Option<u16> {
|
||||
let mut addr = c.dp as usize;
|
||||
while addr != 0 {
|
||||
if (c.ram[addr+2] & 0x7f) == name.length {
|
||||
if c.ram[addr+3..=addr+5] == name.bytes {
|
||||
return Some((addr+6) as u16);
|
||||
}
|
||||
}
|
||||
addr = u16::from_le_bytes(c.ram[addr..=addr+1].try_into().unwrap()) as usize;
|
||||
}
|
||||
return None;
|
||||
}
|
||||
|
||||
fn smudge(c: &mut Core) {
|
||||
c.ram[(c.dp as usize) + 2] |= 0x40;
|
||||
}
|
||||
|
||||
fn unsmudge(c: &mut Core) {
|
||||
c.ram[(c.dp as usize) + 2] &= 0xbf;
|
||||
}
|
||||
|
||||
fn immediate(c: &mut Core) {
|
||||
c.ram[(c.dp as usize) + 2] ^= 0x80;
|
||||
}
|
||||
|
||||
fn is_immediate(c: &mut Core, addr: u16) -> bool {
|
||||
return (c.ram[(addr as usize) - 4] & 0x80) != 0;
|
||||
}
|
||||
|
||||
fn tick(c: &mut Core) {
|
||||
match &c.next_token {
|
||||
Some(t) => {
|
||||
let name = t.to_string();
|
||||
let addr = find(c, truncate_name(&name));
|
||||
match addr {
|
||||
Some(xt) => {
|
||||
push(c, xt);
|
||||
c.post = Post::EatWord;
|
||||
}
|
||||
None => {
|
||||
println!(" ' cannot find {}", name);
|
||||
c.post = Post::WarmReset;
|
||||
}
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
println!(" ' needs an argument");
|
||||
c.post = Post::WarmReset;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn comma(c: &mut Core, val: u16) {
|
||||
let addr = c.here as usize;
|
||||
c.ram[addr..=addr+1].copy_from_slice(&val.to_le_bytes());
|
||||
c.here += 2;
|
||||
}
|
||||
|
||||
fn comma_d(c: &mut Core) {
|
||||
let val = pop(c);
|
||||
comma(c, val);
|
||||
}
|
||||
|
||||
// --- Memory management ---
|
||||
|
||||
fn store(c: &mut Core) {
|
||||
let addr = pop(c) as usize;
|
||||
let val = pop(c);
|
||||
c.ram[addr..=addr+1].copy_from_slice(&val.to_le_bytes());
|
||||
}
|
||||
|
||||
fn load(c: &mut Core) {
|
||||
let addr = pop(c) as usize;
|
||||
push(c, u16::from_le_bytes(c.ram[addr..=addr+1].try_into().unwrap()));
|
||||
}
|
||||
|
||||
fn forget(c: &mut Core) {
|
||||
let xt = pop(c);
|
||||
c.here = xt - 6;
|
||||
let i = c.here as usize;
|
||||
c.dp = u16::from_le_bytes(c.ram[i..=i+1].try_into().unwrap());
|
||||
}
|
||||
|
||||
// --- Stack management ---
|
||||
|
||||
fn push(c: &mut Core, val: u16) {
|
||||
c.dstack[c.tds] = val;
|
||||
c.tds += 1;
|
||||
}
|
||||
|
||||
fn pop(c: &mut Core) -> u16 {
|
||||
if c.tds == 0 {
|
||||
println!(" stack underflow");
|
||||
c.post = Post::WarmReset; // note: could get overwritten later :(
|
||||
return 0; // half-assed, should really return straight to interpreter
|
||||
const PRIMITIVES: [Primitive; 16] = [
|
||||
| x | { /* ret */ x.ip = x.rstack.pop() },
|
||||
| x | { /* >r */ x.rstack.push(x.dstack.pop()) },
|
||||
| x | { /* r> */ x.dstack.push(x.rstack.pop()) },
|
||||
| x | { // ld
|
||||
let a = x.dstack.pop();
|
||||
x.dstack.push(x.load(a));
|
||||
},
|
||||
| x | { // st
|
||||
let a = x.dstack.pop();
|
||||
let v = x.dstack.pop();
|
||||
x.store(a, v);
|
||||
},
|
||||
| x | { // dup
|
||||
let v = x.dstack.pop();
|
||||
x.dstack.push(v);
|
||||
x.dstack.push(v);
|
||||
},
|
||||
| x | { // swp
|
||||
let v1 = x.dstack.pop();
|
||||
let v2 = x.dstack.pop();
|
||||
x.dstack.push(v1);
|
||||
x.dstack.push(v2);
|
||||
},
|
||||
| x | { /* drp */ let _ = x.dstack.pop(); },
|
||||
| x | { // ?
|
||||
let f = x.dstack.pop();
|
||||
if f == 0 {
|
||||
x.ip = x.ip.wrapping_add(2)
|
||||
};
|
||||
},
|
||||
| x | { // add
|
||||
let v1 = x.dstack.pop();
|
||||
let v2 = x.dstack.pop();
|
||||
x.dstack.push(v1.wrapping_add(v2));
|
||||
},
|
||||
| x | { // sft
|
||||
let amt = x.dstack.pop();
|
||||
let val = x.dstack.pop();
|
||||
x.dstack.push(
|
||||
if amt <= 0xf {
|
||||
val << amt
|
||||
} else if amt >= 0xfff0 {
|
||||
val >> (0xffff - amt + 1)
|
||||
} else {
|
||||
c.tds -= 1;
|
||||
return c.dstack[c.tds];
|
||||
0
|
||||
}
|
||||
}
|
||||
|
||||
fn dup(c: &mut Core) {
|
||||
let val = pop(c);
|
||||
push(c, val);
|
||||
push(c, val);
|
||||
}
|
||||
|
||||
fn swap(c: &mut Core) {
|
||||
let val1 = pop(c);
|
||||
let val2 = pop(c);
|
||||
push(c, val1);
|
||||
push(c, val2);
|
||||
}
|
||||
|
||||
fn drop(c: &mut Core) {
|
||||
let _ = pop(c);
|
||||
}
|
||||
|
||||
fn to_r(c: &mut Core, val: u16) {
|
||||
c.rstack[c.trs] = val;
|
||||
c.trs += 1;
|
||||
}
|
||||
|
||||
fn to_r_d(c: &mut Core) {
|
||||
let r1 = from_r(c);
|
||||
let r2 = pop(c);
|
||||
to_r(c, r2);
|
||||
to_r(c, r1);
|
||||
}
|
||||
|
||||
fn from_r(c: &mut Core) -> u16 {
|
||||
c.trs -= 1;
|
||||
return c.rstack[c.trs];
|
||||
}
|
||||
|
||||
fn from_r_d(c: &mut Core) {
|
||||
let r1 = from_r(c);
|
||||
let r2 = from_r(c);
|
||||
to_r(c, r1);
|
||||
push(c, r2);
|
||||
}
|
||||
|
||||
fn call(c: &mut Core) {
|
||||
to_r(c, c.ip);
|
||||
c.ip = pop(c);
|
||||
}
|
||||
|
||||
// note: this is an inline primitive, not a dict entry
|
||||
fn ret(c: &mut Core) {
|
||||
if c.trs == 0 {
|
||||
std::process::exit(0);
|
||||
);
|
||||
},
|
||||
| x | { // or
|
||||
let v1 = x.dstack.pop();
|
||||
let v2 = x.dstack.pop();
|
||||
x.dstack.push(v1 | v2);
|
||||
},
|
||||
| x | { // and
|
||||
let v1 = x.dstack.pop();
|
||||
let v2 = x.dstack.pop();
|
||||
x.dstack.push(v1 & v2);
|
||||
},
|
||||
| x | { // inv
|
||||
let v1 = x.dstack.pop();
|
||||
x.dstack.push(!v1);
|
||||
},
|
||||
| x | { // geq (unsigned)
|
||||
let v2 = x.dstack.pop();
|
||||
let v1 = x.dstack.pop();
|
||||
x.dstack.push(if v1 >= v2 { 0xffff } else { 0 });
|
||||
},
|
||||
| x | { // io
|
||||
let port = x.dstack.pop();
|
||||
match port {
|
||||
0 => {
|
||||
let mut buf: [u8; 1] = [0];
|
||||
let _ = io::stdin().read(&mut buf);
|
||||
x.dstack.push(buf[0] as u16);
|
||||
}
|
||||
c.ip = from_r(c);
|
||||
}
|
||||
|
||||
fn ret_d(c: &mut Core) {
|
||||
_ = from_r(c);
|
||||
ret(c);
|
||||
}
|
||||
|
||||
// --- Control flow ---
|
||||
fn if_skip(c: &mut Core) {
|
||||
let truthy = pop(c);
|
||||
let retaddr = from_r(c);
|
||||
to_r(c, retaddr + if truthy == 0 { 2 } else { 0 });
|
||||
}
|
||||
|
||||
// --- I/O ---
|
||||
fn dot(c: &mut Core) {
|
||||
print!("{} ", pop(c));
|
||||
}
|
||||
|
||||
fn dots(c: &mut Core) {
|
||||
for i in &c.dstack[0..c.tds] {
|
||||
print!("{} ", i);
|
||||
1 => {
|
||||
let val = x.dstack.pop();
|
||||
print!("{}", ((val & 0xff) as u8) as char);
|
||||
let _ = io::stdout().flush();
|
||||
}
|
||||
}
|
||||
|
||||
fn dump(c: &mut Core) {
|
||||
println!("{:?}", c);
|
||||
}
|
||||
|
||||
fn word(c: &mut Core) {
|
||||
match &c.next_token {
|
||||
Some(t) => {
|
||||
println!("{}", t);
|
||||
c.post = Post::EatWord;
|
||||
2 => {
|
||||
println!("{} {:?} {:?}", x.ip, x.dstack, x.rstack);
|
||||
let _ = io::stdout().flush();
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
];
|
||||
|
||||
/* --- The memory map ---
|
||||
*/
|
||||
|
||||
/* --- The dictionary format ---
|
||||
*/
|
||||
|
||||
/* --- The threading kind ---
|
||||
*/
|
||||
|
||||
/* --- Create the dictionary ---
|
||||
*/
|
||||
|
||||
struct Dict<'a> {
|
||||
dp: u16,
|
||||
here: u16,
|
||||
c: &'a mut Core
|
||||
}
|
||||
|
||||
// --- Math and logic ---
|
||||
|
||||
// note: this is an inline primitive, not a dict entry
|
||||
fn lit(c: &mut Core) {
|
||||
let ip = c.ip as usize;
|
||||
push(c, u16::from_le_bytes(c.ram[ip..=ip+1].try_into().unwrap()));
|
||||
c.ip += 2;
|
||||
enum Item {
|
||||
Literal(u16),
|
||||
Call(u16),
|
||||
Opcode(Op)
|
||||
}
|
||||
impl From<u16> for Item { fn from(a: u16) -> Self { Item::Call(a) } }
|
||||
impl From<Op> for Item { fn from(o: Op) -> Self { Item::Opcode(o) } }
|
||||
|
||||
fn add(c: &mut Core) {
|
||||
let v1 = pop(c);
|
||||
let v2 = pop(c);
|
||||
push(c, v1.wrapping_add(v2));
|
||||
}
|
||||
impl Dict<'_> {
|
||||
fn allot(&mut self, n: u16) {
|
||||
self.here = self.here.wrapping_add(n);
|
||||
}
|
||||
|
||||
fn sub(c: &mut Core) {
|
||||
let v1 = pop(c);
|
||||
let v2 = pop(c);
|
||||
push(c, v2.wrapping_sub(v1));
|
||||
}
|
||||
fn comma(&mut self, val: u16) {
|
||||
self.c.store(self.here, val);
|
||||
self.allot(2);
|
||||
}
|
||||
|
||||
fn mul(c: &mut Core) {
|
||||
let v1 = pop(c);
|
||||
let v2 = pop(c);
|
||||
push(c, v1.saturating_mul(v2));
|
||||
}
|
||||
fn emit<T: Into<Item>>(&mut self, val: T) {
|
||||
match val.into() {
|
||||
Item::Call(val) => { self.comma(val) }
|
||||
Item::Opcode(val) => { self.comma(val as u16) }
|
||||
Item::Literal(val) => { assert!(val <= 0x7fff);
|
||||
self.comma((val << 1) | 1) }
|
||||
}
|
||||
}
|
||||
|
||||
fn div(c: &mut Core) {
|
||||
let v1 = pop(c);
|
||||
let v2 = pop(c);
|
||||
push(c, v2.saturating_div(v1));
|
||||
}
|
||||
fn name(&mut self, n: u8, val: [u8; 3]) {
|
||||
self.comma(n as u16 | ((val[0] as u16) << 8));
|
||||
self.comma(val[1] as u16 | ((val[2] as u16) << 8));
|
||||
}
|
||||
|
||||
// --- Inner interpreter ---
|
||||
|
||||
fn fetch(c: &mut Core) -> u16 {
|
||||
let ip = c.ip as usize;
|
||||
let opcode = u16::from_le_bytes(c.ram[ip..=ip+1].try_into().unwrap());
|
||||
c.ip += 2;
|
||||
return opcode;
|
||||
}
|
||||
|
||||
fn execute(c: &mut Core, opcode: u16) {
|
||||
let primitive_index = (65535 - opcode) as usize;
|
||||
if primitive_index < PRIMITIVES.len() {
|
||||
(PRIMITIVES[primitive_index].f)(c);
|
||||
} else {
|
||||
// call
|
||||
to_r(c, c.ip);
|
||||
c.ip = opcode;
|
||||
fn entry(&mut self) {
|
||||
let here = self.here;
|
||||
self.comma(self.dp);
|
||||
self.dp = here;
|
||||
}
|
||||
}
|
||||
|
||||
fn step(c: &mut Core) {
|
||||
let opcode = fetch(c);
|
||||
execute(c, opcode);
|
||||
}
|
||||
fn build_dictionary(c: &mut Core) {
|
||||
use Op::*;
|
||||
use Item::*;
|
||||
|
||||
fn inner(c: &mut Core) {
|
||||
loop {
|
||||
step(c);
|
||||
//println!("ip={} trs={}", c.ip, c.trs);
|
||||
if c.trs == 0 {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
let mut d = Dict {dp: 0, here: 2, c: c};
|
||||
|
||||
// --- Outer interpreter ---
|
||||
macro_rules! forth {
|
||||
($x:expr) => (d.emit($x));
|
||||
($x:expr, $($y:expr),+) => (d.emit($x); forth!($($y),+))
|
||||
}
|
||||
|
||||
fn lbracket(c: &mut Core) {
|
||||
c.state = State::Interpreting;
|
||||
}
|
||||
// key ( -- n )
|
||||
d.entry(); d.name(3, *b"key"); let key = d.here;
|
||||
forth!(Literal(0), IO, RET);
|
||||
|
||||
fn rbracket(c: &mut Core) {
|
||||
c.state = State::Compiling;
|
||||
}
|
||||
// emit ( n -- )
|
||||
d.entry(); d.name(4, *b"emi"); let emit = d.here;
|
||||
forth!(Literal(1), IO, RET);
|
||||
|
||||
fn latest(c: &mut Core) {
|
||||
push(c, c.dp);
|
||||
}
|
||||
// - ( a b -- a-b )
|
||||
d.entry(); d.name(1, *b"- "); let sub = d.here;
|
||||
forth!(INV, Literal(1), ADD, ADD, RET);
|
||||
|
||||
fn here(c: &mut Core) {
|
||||
push(c, c.here);
|
||||
}
|
||||
let zero = d.here;
|
||||
forth!(Literal(0), RTO, DRP, RET);
|
||||
|
||||
fn outer(c: &mut Core, s: &str) {
|
||||
let ss = s.trim();
|
||||
let mut tokens = ss.split(" ").peekable();
|
||||
loop {
|
||||
c.post = Post::Nothing;
|
||||
match tokens.next() {
|
||||
Some(t) => {
|
||||
c.next_token = match tokens.peek() {
|
||||
Some(t) => { Some(t.to_string()) }
|
||||
None => { None }
|
||||
};
|
||||
match find(c, truncate_name(t)) {
|
||||
Some(addr) => {
|
||||
if c.state == State::Interpreting || is_immediate(c, addr) {
|
||||
to_r(c, c.ip);
|
||||
c.ip = addr;
|
||||
inner(c);
|
||||
} else {
|
||||
comma(c, addr);
|
||||
}
|
||||
}
|
||||
None => {
|
||||
let val = t.parse::<u16>();
|
||||
match val {
|
||||
Ok(n) => {
|
||||
match c.state {
|
||||
State::Interpreting => { push(c, n) }
|
||||
State::Compiling => {
|
||||
comma(c, 65534); // lit
|
||||
comma(c, n);
|
||||
}
|
||||
}
|
||||
}
|
||||
Err(_) => {
|
||||
if t != "" {
|
||||
println!("{}?", t);
|
||||
c.post = Post::WarmReset;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
None => { break ; }
|
||||
}
|
||||
match c.post {
|
||||
Post::EatWord => { _ = tokens.next(); }
|
||||
Post::WarmReset => {
|
||||
c.tds = 0;
|
||||
c.trs = 0;
|
||||
c.state = State::Interpreting;
|
||||
break; // discard rest of input line
|
||||
}
|
||||
Post::Nothing => { }
|
||||
};
|
||||
}
|
||||
// 0= ( n -- f )
|
||||
d.entry(); d.name(2, *b"0= "); let zero_eq = d.here;
|
||||
forth!(Q, zero, Literal(0), INV, RET);
|
||||
|
||||
// = ( a b -- a=b )
|
||||
d.entry(); d.name(1, *b"= "); let eq = d.here;
|
||||
forth!(sub, zero_eq, RET);
|
||||
|
||||
// Advance past whitespace
|
||||
let skip_helper = d.here;
|
||||
forth!(RTO, DRP, key, DUP, Literal(33), GEQ, Q, RET, DRP, skip_helper);
|
||||
|
||||
d.entry(); d.name(6, *b"ski"); let skipws = d.here;
|
||||
forth!(skip_helper);
|
||||
|
||||
// over ( a b -- a b a )
|
||||
d.entry(); d.name(4, *b"ove"); let over = d.here;
|
||||
forth!(TOR, DUP, RTO, SWP, RET);
|
||||
|
||||
// 2dup ( a b -- a b a b )
|
||||
d.entry(); d.name(4, *b"2du"); let twodup = d.here;
|
||||
forth!(over, over, RET);
|
||||
|
||||
// Buffer for parsing an input word, formatted as Nabcde.
|
||||
let word_buf = d.here;
|
||||
d.allot(6);
|
||||
|
||||
// min ( a b -- n )
|
||||
d.entry(); d.name(3, *b"min"); let min = d.here;
|
||||
forth!(twodup, GEQ, Q, SWP, DRP, RET);
|
||||
|
||||
// c@ ( a -- n )
|
||||
d.entry(); d.name(2, *b"c@ "); let cld = d.here;
|
||||
forth!(LD, Literal(0xff), AND, RET);
|
||||
|
||||
// c! ( n a -- )
|
||||
d.entry(); d.name(2, *b"c! "); let cst = d.here;
|
||||
forth!(DUP, LD, Literal(0xff), INV, AND, SWP, TOR, OR, RTO, ST, RET);
|
||||
|
||||
// Load 1 letter into buffer.
|
||||
let stchar = d.here;
|
||||
forth!(Literal(word_buf), cld, Literal(1), ADD, DUP, Literal(word_buf), cst,
|
||||
Literal(5), min, Literal(word_buf), ADD, cst, RET);
|
||||
|
||||
// Load letters into buffer until whitespace is hit again.
|
||||
// Return the whitespace character that was seen.
|
||||
let getcs_helper = d.here;
|
||||
forth!(RTO, DRP, stchar, key, DUP, Literal(32), SWP, GEQ, Q, RET, getcs_helper);
|
||||
|
||||
d.entry(); d.name(5, *b"get"); let getcs = d.here;
|
||||
forth!(getcs_helper, RET);
|
||||
|
||||
// word ( -- )
|
||||
// Not quite standard.
|
||||
d.entry(); d.name(4, *b"wor"); let word = d.here;
|
||||
forth!(Literal(word_buf), DUP, Literal(2), ADD,
|
||||
Literal(0x2020), SWP, ST, Literal(0x2000), SWP, ST,
|
||||
skipws, getcs, DRP, RET);
|
||||
|
||||
// latest ( -- a )
|
||||
// Address of "latest" variable. This variable stores the address of
|
||||
// the latest word in the dictionary.
|
||||
let latest_ptr = d.here; d.allot(2);
|
||||
d.entry(); d.name(6, *b"lat"); let latest = d.here;
|
||||
forth!(Literal(latest_ptr), RET);
|
||||
|
||||
let matches = d.here;
|
||||
forth!(Literal(2), ADD, TOR,
|
||||
Literal(word_buf), DUP, Literal(2), ADD, LD, SWP, LD,
|
||||
RTO, DUP, TOR,
|
||||
LD, Literal(0x0080), INV, AND, eq,
|
||||
SWP, RTO, Literal(2), ADD, LD, eq, AND, RET);
|
||||
|
||||
let matched = d.here;
|
||||
forth!(Literal(6), ADD, RTO, DRP, RET);
|
||||
|
||||
let find_helper = d.here;
|
||||
forth!(RTO, DRP,
|
||||
DUP, Literal(0), eq, Q, RET,
|
||||
DUP, matches, Q, matched,
|
||||
LD, find_helper);
|
||||
|
||||
// find ( -- xt|0 )
|
||||
d.entry(); d.name(4, *b"fin"); let find = d.here;
|
||||
forth!(latest, LD, find_helper);
|
||||
|
||||
// ' ( -- xt|0 )
|
||||
d.entry(); d.name(1, *b"' ");
|
||||
forth!(word, find, RET);
|
||||
|
||||
/* --- The outer interpreter ---
|
||||
*/
|
||||
|
||||
// x10 ( n -- n*10 )
|
||||
d.entry(); d.name(3, *b"x10"); let x10 = d.here;
|
||||
forth!(DUP, DUP, Literal(3), SFT, ADD, ADD, RET);
|
||||
|
||||
// here ( -- a )
|
||||
// Address of "here" variable. This variable stores the address of
|
||||
// the first free space in the dictionary
|
||||
let here_ptr = d.here; d.allot(2);
|
||||
d.entry(); d.name(4, *b"her"); let here = d.here;
|
||||
forth!(Literal(here_ptr), RET);
|
||||
|
||||
// state ( -- a )
|
||||
// Address of "state" variable. This variable stores -1 if
|
||||
// interpreting or 0 if compiling.
|
||||
let state_ptr = d.here; d.allot(2);
|
||||
d.entry(); d.name(5, *b"sta"); let state = d.here;
|
||||
forth!(Literal(state_ptr), RET);
|
||||
|
||||
let word_addr = d.here;
|
||||
forth!(Literal(latest_ptr), LD, Literal(2), ADD, RET);
|
||||
|
||||
// immediate ( -- )
|
||||
d.entry(); d.name(9 | 0x80, *b"imm");
|
||||
forth!(word_addr, DUP, LD, Literal(0x0080), OR, SWP, ST, RET);
|
||||
|
||||
// smudge ( -- )
|
||||
d.entry(); d.name(6 | 0x80, *b"smu"); let smudge = d.here;
|
||||
forth!(word_addr, DUP, LD, Literal(0x0040), OR, SWP, ST, RET);
|
||||
|
||||
// unsmudge ( -- )
|
||||
d.entry(); d.name(8 | 0x80, *b"uns"); let unsmudge = d.here;
|
||||
forth!(word_addr, DUP, LD, Literal(0x0040), INV, AND, SWP, ST, RET);
|
||||
|
||||
// [ ( -- )
|
||||
d.entry(); d.name(1 | 0x80, *b"[ "); let lbracket = d.here;
|
||||
forth!(Literal(0), INV, state, ST, RET);
|
||||
|
||||
// ] ( -- )
|
||||
d.entry(); d.name(1 | 0x80, *b"] "); let rbracket = d.here;
|
||||
forth!(Literal(0), state, ST, RET);
|
||||
|
||||
// , ( n -- )
|
||||
d.entry(); d.name(1, *b", "); let comma = d.here;
|
||||
forth!(here, LD, ST,
|
||||
here, LD, Literal(2), ADD, here, ST, RET);
|
||||
|
||||
let compile_call = d.here;
|
||||
forth!(DUP, Literal(4), sub, LD, Literal(0x0080), AND, state, LD, OR, Q, RET,
|
||||
comma, RTO, DRP, RET);
|
||||
|
||||
let compile_lit = d.here;
|
||||
forth!(state, LD, Q, RET,
|
||||
DUP, ADD, Literal(1), ADD, comma, RTO, DRP, RET);
|
||||
|
||||
let end_num = d.here;
|
||||
forth!(DRP, RTO, DRP, RET);
|
||||
|
||||
let bad_num = d.here;
|
||||
forth!(DRP, DRP, DRP, Literal(0), INV, RTO, DRP, RET);
|
||||
|
||||
let number_helper = d.here;
|
||||
forth!(RTO, DRP, DUP, Literal(word_buf), ADD, cld,
|
||||
Literal(48), sub, DUP, Literal(10), GEQ, Q, bad_num,
|
||||
SWP, TOR, SWP, x10, ADD, RTO,
|
||||
DUP, Literal(word_buf), cld, GEQ, Q, end_num,
|
||||
Literal(1), ADD, number_helper);
|
||||
|
||||
// number ( -- n|-1 )
|
||||
d.entry(); d.name(6, *b"num"); let number = d.here;
|
||||
forth!(Literal(0), Literal(1), number_helper);
|
||||
|
||||
// execute ( xt -- )
|
||||
d.entry(); d.name(7, *b"exe"); let execute = d.here;
|
||||
forth!(TOR, RET);
|
||||
|
||||
let doit = d.here;
|
||||
forth!(RTO, DRP, compile_call, execute, RET);
|
||||
|
||||
let bad = d.here;
|
||||
forth!(DRP, Literal(63), emit, RTO, DRP, RET);
|
||||
|
||||
// dispatch ( xt -- )
|
||||
d.entry(); d.name(9, *b"int"); let dispatch = d.here;
|
||||
forth!(DUP, Q, doit,
|
||||
DRP, number, DUP, Literal(1), ADD, zero_eq, Q, bad,
|
||||
compile_lit, RET);
|
||||
|
||||
// quit ( -- )
|
||||
d.entry(); d.name(4, *b"qui"); let quit = d.here;
|
||||
forth!(word, find, dispatch, quit);
|
||||
|
||||
// create ( -- )
|
||||
d.entry(); d.name(6, *b"cre"); let create = d.here;
|
||||
forth!(word,
|
||||
here, LD, latest, LD, comma, latest, ST,
|
||||
Literal(word_buf), DUP, LD, comma, Literal(2), ADD, LD, comma, RET);
|
||||
|
||||
// : ( -- )
|
||||
d.entry(); d.name(1, *b": ");
|
||||
forth!(create, smudge, rbracket, RET);
|
||||
|
||||
// ; ( -- )
|
||||
d.entry(); d.name(1 | 0x80, *b"; ");
|
||||
forth!(Literal(!(RET as u16)), INV, comma, lbracket, unsmudge, RET);
|
||||
|
||||
// Finally put the primitives in the dictionary so they can be called directly.
|
||||
d.entry(); d.name(3, *b"ret"); forth!(RTO, DRP, RET);
|
||||
d.entry(); d.name(2, *b">r "); forth!(RTO, SWP, TOR, TOR, RET);
|
||||
d.entry(); d.name(2, *b"r> "); forth!(RTO, RTO, SWP, TOR, RET);
|
||||
d.entry(); d.name(1, *b"@ "); forth!(LD, RET);
|
||||
d.entry(); d.name(1, *b"! "); forth!(ST, RET);
|
||||
d.entry(); d.name(3, *b"dup"); forth!(DUP, RET);
|
||||
d.entry(); d.name(4, *b"swa"); forth!(SWP, RET);
|
||||
d.entry(); d.name(4, *b"dro"); forth!(DRP, RET);
|
||||
|
||||
d.entry(); d.name(1 | 0x80, *b"? "); // This one only works in-line.
|
||||
forth!(Literal(!(Q as u16)), INV, comma, RET);
|
||||
|
||||
d.entry(); d.name(1, *b"+ "); forth!(ADD, RET);
|
||||
d.entry(); d.name(5, *b"shi"); forth!(SFT, RET);
|
||||
d.entry(); d.name(2, *b"or "); forth!(OR, RET);
|
||||
d.entry(); d.name(3, *b"and"); forth!(AND, RET);
|
||||
d.entry(); d.name(3, *b"inv"); forth!(INV, RET);
|
||||
d.entry(); d.name(3, *b"u>="); forth!(GEQ, RET);
|
||||
d.entry(); d.name(2, *b"io "); let io = d.here; forth!(IO, RET);
|
||||
|
||||
d.c.store(latest_ptr, io-6);
|
||||
d.c.store(here_ptr, d.here);
|
||||
d.c.store(state_ptr, 0xffff);
|
||||
d.c.store(0, quit);
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let mut c = new_core();
|
||||
build_dictionary(&mut c);
|
||||
c.ip = 0;
|
||||
loop {
|
||||
let mut buf = String::new();
|
||||
match io::stdin().read_line(&mut buf) {
|
||||
Ok(_) => {
|
||||
outer(&mut c, &buf);
|
||||
match c.state {
|
||||
State::Interpreting => {println!(" ok")}
|
||||
State::Compiling => {}
|
||||
};
|
||||
}
|
||||
Err(_) => { break; }
|
||||
}
|
||||
c.step();
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
: dog recursive r> drop dup . 1 - dup ? dog ;
|
||||
: dog dog ;
|
||||
100 dog
|
||||
*/
|
||||
|
||||
/* TODO LIST
|
||||
* 0=
|
||||
* allot, cell, cells
|
||||
* base
|
||||
* c@ and c!
|
||||
* comments ( )
|
||||
* comments \
|
||||
* emit
|
||||
* forth-style line parsing, instead of pre-baked str::split(" ").
|
||||
* key
|
||||
* recursive with more creature comforts
|
||||
* see
|
||||
* startup message "XXXXX bytes free"
|
||||
* strings ." this", s" that", etc.
|
||||
* words
|
||||
*/
|
||||
|
|
490
frustration2.rs
490
frustration2.rs
|
@ -1,490 +0,0 @@
|
|||
/* --- The virtual CPU ---
|
||||
*/
|
||||
|
||||
use std::io;
|
||||
use std::io::Read;
|
||||
use std::io::Write;
|
||||
use std::convert::TryInto;
|
||||
const ADDRESS_SPACE: usize = 65535;
|
||||
|
||||
#[derive(Debug)]
|
||||
struct Stack<const N: usize> {
|
||||
mem: [u16; N],
|
||||
tos: usize
|
||||
}
|
||||
|
||||
impl<const N: usize> Stack<N> {
|
||||
fn push(&mut self, val: u16) {
|
||||
self.tos = (self.tos.wrapping_add(1)) & (N - 1);
|
||||
self.mem[self.tos] = val;
|
||||
}
|
||||
|
||||
fn pop(&mut self) -> u16 {
|
||||
let val = self.mem[self.tos];
|
||||
self.mem[self.tos] = 0;
|
||||
self.tos = (self.tos.wrapping_sub(1)) & (N - 1);
|
||||
return val;
|
||||
}
|
||||
}
|
||||
|
||||
struct Core {
|
||||
ram: [u8; ADDRESS_SPACE],
|
||||
ip: u16,
|
||||
dstack: Stack<32>,
|
||||
rstack: Stack<32>
|
||||
}
|
||||
|
||||
fn new_core() -> Core {
|
||||
let c = Core {
|
||||
ram: [0; ADDRESS_SPACE],
|
||||
ip: 0,
|
||||
dstack: Stack {tos: 0, mem: [0; 32]},
|
||||
rstack: Stack {tos: 0, mem: [0; 32]}};
|
||||
return c;
|
||||
}
|
||||
|
||||
impl Core {
|
||||
fn load(&self, addr: u16) -> u16 {
|
||||
let a = addr as usize;
|
||||
return u16::from_le_bytes(self.ram[a..=a+1].try_into().unwrap());
|
||||
}
|
||||
|
||||
fn store(&mut self, addr: u16, val: u16) {
|
||||
let a = addr as usize;
|
||||
self.ram[a..=a+1].copy_from_slice(&val.to_le_bytes());
|
||||
}
|
||||
|
||||
fn step(&mut self) {
|
||||
let opcode = self.load(self.ip);
|
||||
self.ip = self.ip.wrapping_add(2);
|
||||
if (opcode >= 0xffe0) && (opcode & 1 == 0) {
|
||||
PRIMITIVES[((opcode - 0xffe0) >> 1) as usize](self);
|
||||
}
|
||||
else if (opcode & 1) == 1 {
|
||||
// Literal
|
||||
self.dstack.push(opcode >> 1);
|
||||
}
|
||||
else {
|
||||
// Call
|
||||
self.rstack.push(self.ip);
|
||||
self.ip = opcode;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
type Primitive = fn(&mut Core);
|
||||
|
||||
enum Op {
|
||||
RET = 0xffe0, TOR = 0xffe2, RTO = 0xffe4, LD = 0xffe6,
|
||||
ST = 0xffe8, DUP = 0xffea, SWP = 0xffec, DRP = 0xffee,
|
||||
Q = 0xfff0, ADD = 0xfff2, SFT = 0xfff4, OR = 0xfff6,
|
||||
AND = 0xfff8, INV = 0xfffa, GEQ = 0xfffc, IO = 0xfffe,
|
||||
}
|
||||
|
||||
const PRIMITIVES: [Primitive; 16] = [
|
||||
| x | { /* ret */ x.ip = x.rstack.pop() },
|
||||
| x | { /* >r */ x.rstack.push(x.dstack.pop()) },
|
||||
| x | { /* r> */ x.dstack.push(x.rstack.pop()) },
|
||||
| x | { // ld
|
||||
let a = x.dstack.pop();
|
||||
x.dstack.push(x.load(a));
|
||||
},
|
||||
| x | { // st
|
||||
let a = x.dstack.pop();
|
||||
let v = x.dstack.pop();
|
||||
x.store(a, v);
|
||||
},
|
||||
| x | { // dup
|
||||
let v = x.dstack.pop();
|
||||
x.dstack.push(v);
|
||||
x.dstack.push(v);
|
||||
},
|
||||
| x | { // swp
|
||||
let v1 = x.dstack.pop();
|
||||
let v2 = x.dstack.pop();
|
||||
x.dstack.push(v1);
|
||||
x.dstack.push(v2);
|
||||
},
|
||||
| x | { /* drp */ let _ = x.dstack.pop(); },
|
||||
| x | { // ?
|
||||
let f = x.dstack.pop();
|
||||
if f == 0 {
|
||||
x.ip = x.ip.wrapping_add(2)
|
||||
};
|
||||
},
|
||||
| x | { // add
|
||||
let v1 = x.dstack.pop();
|
||||
let v2 = x.dstack.pop();
|
||||
x.dstack.push(v1.wrapping_add(v2));
|
||||
},
|
||||
| x | { // sft
|
||||
let amt = x.dstack.pop();
|
||||
let val = x.dstack.pop();
|
||||
x.dstack.push(
|
||||
if amt <= 0xf {
|
||||
val << amt
|
||||
} else if amt >= 0xfff0 {
|
||||
val >> (0xffff - amt + 1)
|
||||
} else {
|
||||
0
|
||||
}
|
||||
);
|
||||
},
|
||||
| x | { // or
|
||||
let v1 = x.dstack.pop();
|
||||
let v2 = x.dstack.pop();
|
||||
x.dstack.push(v1 | v2);
|
||||
},
|
||||
| x | { // and
|
||||
let v1 = x.dstack.pop();
|
||||
let v2 = x.dstack.pop();
|
||||
x.dstack.push(v1 & v2);
|
||||
},
|
||||
| x | { // inv
|
||||
let v1 = x.dstack.pop();
|
||||
x.dstack.push(!v1);
|
||||
},
|
||||
| x | { // geq (unsigned)
|
||||
let v2 = x.dstack.pop();
|
||||
let v1 = x.dstack.pop();
|
||||
x.dstack.push(if v1 >= v2 { 0xffff } else { 0 });
|
||||
},
|
||||
| x | { // io
|
||||
let port = x.dstack.pop();
|
||||
match port {
|
||||
0 => {
|
||||
let mut buf: [u8; 1] = [0];
|
||||
let _ = io::stdin().read(&mut buf);
|
||||
x.dstack.push(buf[0] as u16);
|
||||
}
|
||||
1 => {
|
||||
let val = x.dstack.pop();
|
||||
print!("{}", ((val & 0xff) as u8) as char);
|
||||
let _ = io::stdout().flush();
|
||||
}
|
||||
2 => {
|
||||
println!("{} {:?} {:?}", x.ip, x.dstack, x.rstack);
|
||||
let _ = io::stdout().flush();
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
];
|
||||
|
||||
/* --- The memory map ---
|
||||
*/
|
||||
|
||||
/* --- The dictionary format ---
|
||||
*/
|
||||
|
||||
/* --- The threading kind ---
|
||||
*/
|
||||
|
||||
/* --- Create the dictionary ---
|
||||
*/
|
||||
|
||||
struct Dict<'a> {
|
||||
dp: u16,
|
||||
here: u16,
|
||||
c: &'a mut Core
|
||||
}
|
||||
|
||||
enum Item {
|
||||
Literal(u16),
|
||||
Call(u16),
|
||||
Opcode(Op)
|
||||
}
|
||||
impl From<u16> for Item { fn from(a: u16) -> Self { Item::Call(a) } }
|
||||
impl From<Op> for Item { fn from(o: Op) -> Self { Item::Opcode(o) } }
|
||||
|
||||
impl Dict<'_> {
|
||||
fn allot(&mut self, n: u16) {
|
||||
self.here = self.here.wrapping_add(n);
|
||||
}
|
||||
|
||||
fn comma(&mut self, val: u16) {
|
||||
self.c.store(self.here, val);
|
||||
self.allot(2);
|
||||
}
|
||||
|
||||
fn emit<T: Into<Item>>(&mut self, val: T) {
|
||||
match val.into() {
|
||||
Item::Call(val) => { self.comma(val) }
|
||||
Item::Opcode(val) => { self.comma(val as u16) }
|
||||
Item::Literal(val) => { assert!(val <= 0x7fff);
|
||||
self.comma((val << 1) | 1) }
|
||||
}
|
||||
}
|
||||
|
||||
fn name(&mut self, n: u8, val: [u8; 3]) {
|
||||
self.comma(n as u16 | ((val[0] as u16) << 8));
|
||||
self.comma(val[1] as u16 | ((val[2] as u16) << 8));
|
||||
}
|
||||
|
||||
fn entry(&mut self) {
|
||||
let here = self.here;
|
||||
self.comma(self.dp);
|
||||
self.dp = here;
|
||||
}
|
||||
}
|
||||
|
||||
fn build_dictionary(c: &mut Core) {
|
||||
use Op::*;
|
||||
use Item::*;
|
||||
|
||||
let mut d = Dict {dp: 0, here: 2, c: c};
|
||||
|
||||
macro_rules! forth {
|
||||
($x:expr) => (d.emit($x));
|
||||
($x:expr, $($y:expr),+) => (d.emit($x); forth!($($y),+))
|
||||
}
|
||||
|
||||
// key ( -- n )
|
||||
d.entry(); d.name(3, *b"key"); let key = d.here;
|
||||
forth!(Literal(0), IO, RET);
|
||||
|
||||
// emit ( n -- )
|
||||
d.entry(); d.name(4, *b"emi"); let emit = d.here;
|
||||
forth!(Literal(1), IO, RET);
|
||||
|
||||
// - ( a b -- a-b )
|
||||
d.entry(); d.name(1, *b"- "); let sub = d.here;
|
||||
forth!(INV, Literal(1), ADD, ADD, RET);
|
||||
|
||||
let zero = d.here;
|
||||
forth!(Literal(0), RTO, DRP, RET);
|
||||
|
||||
// 0= ( n -- f )
|
||||
d.entry(); d.name(2, *b"0= "); let zero_eq = d.here;
|
||||
forth!(Q, zero, Literal(0), INV, RET);
|
||||
|
||||
// = ( a b -- a=b )
|
||||
d.entry(); d.name(1, *b"= "); let eq = d.here;
|
||||
forth!(sub, zero_eq, RET);
|
||||
|
||||
// Advance past whitespace
|
||||
let skip_helper = d.here;
|
||||
forth!(RTO, DRP, key, DUP, Literal(33), GEQ, Q, RET, DRP, skip_helper);
|
||||
|
||||
d.entry(); d.name(6, *b"ski"); let skipws = d.here;
|
||||
forth!(skip_helper);
|
||||
|
||||
// over ( a b -- a b a )
|
||||
d.entry(); d.name(4, *b"ove"); let over = d.here;
|
||||
forth!(TOR, DUP, RTO, SWP, RET);
|
||||
|
||||
// 2dup ( a b -- a b a b )
|
||||
d.entry(); d.name(4, *b"2du"); let twodup = d.here;
|
||||
forth!(over, over, RET);
|
||||
|
||||
// Buffer for parsing an input word, formatted as Nabcde.
|
||||
let word_buf = d.here;
|
||||
d.allot(6);
|
||||
|
||||
// min ( a b -- n )
|
||||
d.entry(); d.name(3, *b"min"); let min = d.here;
|
||||
forth!(twodup, GEQ, Q, SWP, DRP, RET);
|
||||
|
||||
// c@ ( a -- n )
|
||||
d.entry(); d.name(2, *b"c@ "); let cld = d.here;
|
||||
forth!(LD, Literal(0xff), AND, RET);
|
||||
|
||||
// c! ( n a -- )
|
||||
d.entry(); d.name(2, *b"c! "); let cst = d.here;
|
||||
forth!(DUP, LD, Literal(0xff), INV, AND, SWP, TOR, OR, RTO, ST, RET);
|
||||
|
||||
// Load 1 letter into buffer.
|
||||
let stchar = d.here;
|
||||
forth!(Literal(word_buf), cld, Literal(1), ADD, DUP, Literal(word_buf), cst,
|
||||
Literal(5), min, Literal(word_buf), ADD, cst, RET);
|
||||
|
||||
// Load letters into buffer until whitespace is hit again.
|
||||
// Return the whitespace character that was seen.
|
||||
let getcs_helper = d.here;
|
||||
forth!(RTO, DRP, stchar, key, DUP, Literal(32), SWP, GEQ, Q, RET, getcs_helper);
|
||||
|
||||
d.entry(); d.name(5, *b"get"); let getcs = d.here;
|
||||
forth!(getcs_helper, RET);
|
||||
|
||||
// word ( -- )
|
||||
// Not quite standard.
|
||||
d.entry(); d.name(4, *b"wor"); let word = d.here;
|
||||
forth!(Literal(word_buf), DUP, Literal(2), ADD,
|
||||
Literal(0x2020), SWP, ST, Literal(0x2000), SWP, ST,
|
||||
skipws, getcs, DRP, RET);
|
||||
|
||||
// latest ( -- a )
|
||||
// Address of "latest" variable. This variable stores the address of
|
||||
// the latest word in the dictionary.
|
||||
let latest_ptr = d.here; d.allot(2);
|
||||
d.entry(); d.name(6, *b"lat"); let latest = d.here;
|
||||
forth!(Literal(latest_ptr), RET);
|
||||
|
||||
let matches = d.here;
|
||||
forth!(Literal(2), ADD, TOR,
|
||||
Literal(word_buf), DUP, Literal(2), ADD, LD, SWP, LD,
|
||||
RTO, DUP, TOR,
|
||||
LD, Literal(0x0080), INV, AND, eq,
|
||||
SWP, RTO, Literal(2), ADD, LD, eq, AND, RET);
|
||||
|
||||
let matched = d.here;
|
||||
forth!(Literal(6), ADD, RTO, DRP, RET);
|
||||
|
||||
let find_helper = d.here;
|
||||
forth!(RTO, DRP,
|
||||
DUP, Literal(0), eq, Q, RET,
|
||||
DUP, matches, Q, matched,
|
||||
LD, find_helper);
|
||||
|
||||
// find ( -- xt|0 )
|
||||
d.entry(); d.name(4, *b"fin"); let find = d.here;
|
||||
forth!(latest, LD, find_helper);
|
||||
|
||||
// ' ( -- xt|0 )
|
||||
d.entry(); d.name(1, *b"' ");
|
||||
forth!(word, find, RET);
|
||||
|
||||
/* --- The outer interpreter ---
|
||||
*/
|
||||
|
||||
// x10 ( n -- n*10 )
|
||||
d.entry(); d.name(3, *b"x10"); let x10 = d.here;
|
||||
forth!(DUP, DUP, Literal(3), SFT, ADD, ADD, RET);
|
||||
|
||||
// here ( -- a )
|
||||
// Address of "here" variable. This variable stores the address of
|
||||
// the first free space in the dictionary
|
||||
let here_ptr = d.here; d.allot(2);
|
||||
d.entry(); d.name(4, *b"her"); let here = d.here;
|
||||
forth!(Literal(here_ptr), RET);
|
||||
|
||||
// state ( -- a )
|
||||
// Address of "state" variable. This variable stores -1 if
|
||||
// interpreting or 0 if compiling.
|
||||
let state_ptr = d.here; d.allot(2);
|
||||
d.entry(); d.name(5, *b"sta"); let state = d.here;
|
||||
forth!(Literal(state_ptr), RET);
|
||||
|
||||
let word_addr = d.here;
|
||||
forth!(Literal(latest_ptr), LD, Literal(2), ADD, RET);
|
||||
|
||||
// immediate ( -- )
|
||||
d.entry(); d.name(9 | 0x80, *b"imm");
|
||||
forth!(word_addr, DUP, LD, Literal(0x0080), OR, SWP, ST, RET);
|
||||
|
||||
// smudge ( -- )
|
||||
d.entry(); d.name(6 | 0x80, *b"smu"); let smudge = d.here;
|
||||
forth!(word_addr, DUP, LD, Literal(0x0040), OR, SWP, ST, RET);
|
||||
|
||||
// unsmudge ( -- )
|
||||
d.entry(); d.name(8 | 0x80, *b"uns"); let unsmudge = d.here;
|
||||
forth!(word_addr, DUP, LD, Literal(0x0040), INV, AND, SWP, ST, RET);
|
||||
|
||||
// [ ( -- )
|
||||
d.entry(); d.name(1 | 0x80, *b"[ "); let lbracket = d.here;
|
||||
forth!(Literal(0), INV, state, ST, RET);
|
||||
|
||||
// ] ( -- )
|
||||
d.entry(); d.name(1 | 0x80, *b"] "); let rbracket = d.here;
|
||||
forth!(Literal(0), state, ST, RET);
|
||||
|
||||
// , ( n -- )
|
||||
d.entry(); d.name(1, *b", "); let comma = d.here;
|
||||
forth!(here, LD, ST,
|
||||
here, LD, Literal(2), ADD, here, ST, RET);
|
||||
|
||||
let compile_call = d.here;
|
||||
forth!(DUP, Literal(4), sub, LD, Literal(0x0080), AND, state, LD, OR, Q, RET,
|
||||
comma, RTO, DRP, RET);
|
||||
|
||||
let compile_lit = d.here;
|
||||
forth!(state, LD, Q, RET,
|
||||
DUP, ADD, Literal(1), ADD, comma, RTO, DRP, RET);
|
||||
|
||||
let end_num = d.here;
|
||||
forth!(DRP, RTO, DRP, RET);
|
||||
|
||||
let bad_num = d.here;
|
||||
forth!(DRP, DRP, DRP, Literal(0), INV, RTO, DRP, RET);
|
||||
|
||||
let number_helper = d.here;
|
||||
forth!(RTO, DRP, DUP, Literal(word_buf), ADD, cld,
|
||||
Literal(48), sub, DUP, Literal(10), GEQ, Q, bad_num,
|
||||
SWP, TOR, SWP, x10, ADD, RTO,
|
||||
DUP, Literal(word_buf), cld, GEQ, Q, end_num,
|
||||
Literal(1), ADD, number_helper);
|
||||
|
||||
// number ( -- n|-1 )
|
||||
d.entry(); d.name(6, *b"num"); let number = d.here;
|
||||
forth!(Literal(0), Literal(1), number_helper);
|
||||
|
||||
// execute ( xt -- )
|
||||
d.entry(); d.name(7, *b"exe"); let execute = d.here;
|
||||
forth!(TOR, RET);
|
||||
|
||||
let doit = d.here;
|
||||
forth!(RTO, DRP, compile_call, execute, RET);
|
||||
|
||||
let bad = d.here;
|
||||
forth!(DRP, Literal(63), emit, RTO, DRP, RET);
|
||||
|
||||
// dispatch ( xt -- )
|
||||
d.entry(); d.name(9, *b"int"); let dispatch = d.here;
|
||||
forth!(DUP, Q, doit,
|
||||
DRP, number, DUP, Literal(1), ADD, zero_eq, Q, bad,
|
||||
compile_lit, RET);
|
||||
|
||||
// quit ( -- )
|
||||
d.entry(); d.name(4, *b"qui"); let quit = d.here;
|
||||
forth!(word, find, dispatch, quit);
|
||||
|
||||
// create ( -- )
|
||||
d.entry(); d.name(6, *b"cre"); let create = d.here;
|
||||
forth!(word,
|
||||
here, LD, latest, LD, comma, latest, ST,
|
||||
Literal(word_buf), DUP, LD, comma, Literal(2), ADD, LD, comma, RET);
|
||||
|
||||
// : ( -- )
|
||||
d.entry(); d.name(1, *b": ");
|
||||
forth!(create, smudge, rbracket, RET);
|
||||
|
||||
// ; ( -- )
|
||||
d.entry(); d.name(1 | 0x80, *b"; ");
|
||||
forth!(Literal(!(RET as u16)), INV, comma, lbracket, unsmudge, RET);
|
||||
|
||||
// Finally put the primitives in the dictionary so they can be called directly.
|
||||
d.entry(); d.name(3, *b"ret"); forth!(RTO, DRP, RET);
|
||||
d.entry(); d.name(2, *b">r "); forth!(RTO, SWP, TOR, TOR, RET);
|
||||
d.entry(); d.name(2, *b"r> "); forth!(RTO, RTO, SWP, TOR, RET);
|
||||
d.entry(); d.name(1, *b"@ "); forth!(LD, RET);
|
||||
d.entry(); d.name(1, *b"! "); forth!(ST, RET);
|
||||
d.entry(); d.name(3, *b"dup"); forth!(DUP, RET);
|
||||
d.entry(); d.name(4, *b"swa"); forth!(SWP, RET);
|
||||
d.entry(); d.name(4, *b"dro"); forth!(DRP, RET);
|
||||
|
||||
d.entry(); d.name(1 | 0x80, *b"? "); // This one only works in-line.
|
||||
forth!(Literal(!(Q as u16)), INV, comma, RET);
|
||||
|
||||
d.entry(); d.name(1, *b"+ "); forth!(ADD, RET);
|
||||
d.entry(); d.name(5, *b"shi"); forth!(SFT, RET);
|
||||
d.entry(); d.name(2, *b"or "); forth!(OR, RET);
|
||||
d.entry(); d.name(3, *b"and"); forth!(AND, RET);
|
||||
d.entry(); d.name(3, *b"inv"); forth!(INV, RET);
|
||||
d.entry(); d.name(3, *b"u>="); forth!(GEQ, RET);
|
||||
d.entry(); d.name(2, *b"io "); let io = d.here; forth!(IO, RET);
|
||||
|
||||
d.c.store(latest_ptr, io-6);
|
||||
d.c.store(here_ptr, d.here);
|
||||
d.c.store(state_ptr, 0xffff);
|
||||
d.c.store(0, quit);
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let mut c = new_core();
|
||||
build_dictionary(&mut c);
|
||||
c.ip = 0;
|
||||
loop {
|
||||
c.step();
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in a new issue