
 f rth

User's Guide & Reference
An RPN, Object Oriented Language that is not FORTH.

by Peter Camilleri

Last Update: April 13, 2016

Covering fOOrth version 0.6.0

Status: Preliminary

Page 1 of 354

About the fOOrth logo art:

The fOOrth artwork is based on the cute-brown-owl.png file found at the web site:
http://www.mycutegraphics.com/graphics/owl/cute-brown-owl.html

At the time of the creation of this document, it is accompanied with the following usage
specification:

Cute Brown Owl Clip Art - Free owl clip art images for teachers, classroom
projects, web pages, blogs, print and more.

Page 2 of 354

http://www.mycutegraphics.com/graphics/owl/cute-brown-owl.html

Table of Contents

The MIT License (MIT)..............................7

Introduction..9
Community 9

About the name fOOrth 9

How fOOrth came to be 10

Goals and Principles 11

About Ruby 12

Special Notes of Thanks 12

Version History 13

Installation..17
Ruby 17

fOOrth 18

Installing from GitHub 18

Contributing 19

Running fOOrth 19

Testing 21

Source Archive 21

Command Entry.......................................23

First Steps..25

The Syntax and Style of fOOrth...............27
Syntax 27

Spaces 27

Comments 27

String Literals 28

Numeric Literals 28

Procedure Literals 28

A fOOrth Calculator..................................29
The Basics 29

Stack Manipulation 31

Programming 32

Control Structures 33

Data Memory 37

Data Storage in fOOrth............................39
Typing 39

Declarations 39

Scoping 39

Referencing 41

Mutation 42

Data Storage Examples 43

Data Collections in fOOrth.......................45
Arrays vs. Hashes 45

Arrays and Hashes 47

Moving Data 47

The Stack and Queue classes 50

Objects 51

Cloning Data..53
Deep vs Shallow Copy 53

Permissive Copying 56

Input/Output...57
The Console 57

Streams of Text 58

File Naming Tranquility 63

Formatting and Parsing...........................65
JSON Formatting and Parsing 66

Handling Exceptions................................67
The Nature of Exceptions in fOOrth 67

Handling Errors 67

Generating Errors 72

fOOrth Native Exception Codes: 73

Application Error Codes: 74

Ruby Mapped Exception Codes: 74

Multiple Nexus Programming..................79
Multi-thread programming 81

Multi-fiber programming 84

Ruby and Multi-threading 86

A Brief Overview of Key OO Concepts....87
Class Based OO 87

Class Based Inheritance 87

Prototype Based OO 89

Methods in fOOrth 89

Late Binding and Polymorphism 90

Summary 90

Page 3 of 354

Method Mapping......................................91
Exploring the mapping system 91

Context...93
Exploring Context 93

Compiler Modes 95

Tracking the Virtual Machine 96

Routing...97
Virtual Machine Methods 97

Shared Methods 98

Exclusive Methods 98

Shared Stub Methods 98

Exclusive Stub Methods 99

Local Methods 99

Summary 99

Routing Internals 100

Self...103
Applying Self 103

Changing Self 104

Boolean Data...105
What values represent true and false? 105

Processing Boolean Data 105

Boolean Constants 105

Numeric Data...107

String Data...109

Procedure Data......................................111
Values and Indexes 111

A fOOrth Reference...............................113

Array...115
Array Literals 115

Queues, Stacks, and Deques 117

Class Methods 117

Instance Methods 119

Bundle..141
Stepping through a Bundle 141

Instance Methods 142

Class..145

Instance Methods 145

Commands 150

Complex...151
Complex Literals 151

Instance Methods 152

Instance Stubs 153

Duration...155
Creating Duration Values 156

Special Duration Values 157

Duration Formatting 158

Class Methods 160

Instance Methods 161

False..169
False Literals 169

Instance Methods 169

Fiber...171
Class Methods 171

Instance Methods 172

Class Stubs 174

Float...175
Float Literals 175

Instance Methods 176

Hash...179
Hash Literals 179

Class Methods 181

Instance Methods 182

InStream..187
Class Methods 187

Instance Methods 188

Class Stubs 189

Integer..191
Integer Literals 191

Instance Methods 192

Mutex...197
Class Methods 197

Instance Methods 198

Nil...199

Page 4 of 354

Nil Literals 199

Instance Methods 199

Numeric...201
Special Numeric Values 201

Instance Methods 203

Object...225
Instance Methods 225

Commands 236

OutStream...237
Class Methods 237

Instance Methods 239

Class Stubs 241

Procedure..243
Procedure Literals 243

Instance Methods 245

Queue..249
Instance Methods 249

Rational..251
Rational Literals 251

Instance Methods 251

Stack {Deprecated}................................255
Instance Methods 255

String..257
String Literals 257

Format Strings 258

Parse Strings 262

Instance Methods 264

StringBuffer..279
StringBuffer Literals 279

Instance Methods 279

SyncBundle..283
SyncBundle vs. Bundle? 283

Instance Methods 283

Thread..285
Class Methods 285

Instance Methods 286

Time...289
Creating Time Values 289

Special Time Values 290

Time Formatting 291

Class Methods 294

Instance Methods 296

Class Stubs 303

True..305
True Literals 305

VirtualMachine.......................................307
Instance Methods 308

Commands 329

Appendix A – Symbol Glossary.............337

Appendix B – Regular Expressions.......339
Creating Regular Expressions: 339

Special Keys: 339

Grouping: 340

Repetition: 340

Peeking Outward: 340

Appendix C – Git....................................341

Appendix D – The fOOrth API...............343
The XfOOrth module 343

XfOOrth::main 343

Virtual Machine process_x 344

User Guide Release History:.................353

Page 5 of 354

Page 6 of 354

The MIT License (MIT).

Copyright © 2014, 2015, 2016 by Peter Camilleri

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sub-license, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Page 7 of 354

Page 8 of 354

Introduction

Thank you for taking a moment to peruse the fOOrth user's guide and reference. The
following pages, chapters, and sections deal with fOOrth, an experiment in FORTH inspired
language design and compiler implementation in Ruby. In particular, a special focus on
object oriented design and meta-programming were applied to the language and its
implementation.

It must be stressed that as an experiment, it is likely the fOOrth is not especially suited to
any particular purpose, aside from research. Then again, perhaps some use beyond
academic interest will be found.

On a related matter, as an esoteric research language, neither fOOrth nor this User's Guide
is a good programming introduction for a beginner or early programmer. On the contrary,
the “raw frontier” nature of this work makes it far more suitable to those well versed in a
three or more languages, or at the very least, having an in depth knowledge of Ruby (that's
Ruby, not Ruby on Rails, see Ruby below) or Smalltalk.

Again, thank you for your interest; Any comments, suggestions, fixes, improvements, or
criticisms are most welcomed.

Community

It seems that no technology is complete today without a supporting web site. I am not about
to buck this trend with fOOrth. While it is currently very much a work in progress, fOOrth is
supported by the web site at the following address:

http://www.foorth.org/

I look forward to providing and utilizing up-to-date resources and support through this world
wide web forum.

About the name fOOrth

The name of programming language fOOrth is an example of a malamanteau1. That is a
portmanteau of a malapropism.

The portmanteau portion of this is the mash-up of FORTH2 and the “OO” of object oriented
programming3 systems. It is short, easy to pronounce, slightly witty, and a unique
opportunity to describe an actual word as being a malamanteau.

The malapropism involved is quite simply that fOOrth is not FORTH. While the acronym
FNF, for fOOrth is Not FORTH, is also short, it is not at all as easy to pronounce as fOOrth.

1 Malamanteau, see XKCD 739 at http://xkcd.com/739/, http://en.wikipedia.org/wiki/Xkcd#Recurring_items
2 See http://en.wikipedia.org/wiki/Forth_(programming_language),

http://en.wikipedia.org/wiki/Charles_H._Moore
3 See http://en.wikipedia.org/wiki/Object-oriented_programming

Page 9 of 354

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Charles_H._Moore
http://en.wikipedia.org/wiki/Forth_(programming_language)
http://en.wikipedia.org/wiki/Xkcd#Recurring_items
http://xkcd.com/739/
http://www.foorth.org/

How fOOrth came to be

I have had a fascination with stack based, postfix notation programming environments
going back over 30 years. This started with those awesome calculators by Hewlett
Packard4. I could never afford to buy one, but I was always intrigued by their elegant,
expressive power compared with more conventional calculators.

Later, as part of a college course, I was tasked with creating a programming language
interpreter. I must admit I was struggling with this task. Then one Sunday afternoon, while
visiting my Uncle Sal's home, I began working away at his Radio Shack TRS-80 Computer
in Basic. In the course of a two hour programming session, I had created a tiny stack based
calculator. Inspired by the simplicity of this simple interpreter, I was able to design a fuller
version that ran on the University's PDP-10 mainframe in APL. Yes it ran fairly slowly. The
odd thing was that compared to the other student's efforts, it ran amazingly fast! The
simplicity of the syntax meant that little time was wasted parsing and analyzing the source
text.

Some years later, I was involved in a major project developed in FORTH during which I
came to admire and appreciate the expressive power of the language. While the project
was not successful in the end, this was largely a consequence of the nearly impossible
goals we had set for ourselves and not a reflection of FORTH. Well not much of a reflection
on FORTH as we'll see next.

FORTH today is about as dead a language as you are going to find. Like other extinctions
throughout history, this can be traced by its utter failure to adapt to changing conditions.
When FORTH was created, most computers were very primitive. They had very little
processing power, microscopic memory resources and mass storage, and lacked any form
of operating system, file storage, or peripherals; user interfaces were upper case only
ASCII subsets. In this environment FORTH was an excellent choice. Systems were tiny and
FORTH fit those systems well, and its supporters liked things that way. As computers
improved, FORTH stood still. File systems, floating point math, memory management,
improved user interfaces all came to everyday computers, but not to FORTH5.

FORTH was still efficient and fast, but computers continued to get more and more memory,
processing power, and advanced I/O. FORTH was static, stationary, and dying. To this day,
FORTH is still largely an upper case only language. Just recently. I remember watching in
disbelief a video in which a spokesperson for the company Green Arrays, Inc6 stated that
an enhancement to their FORTH oriented processor would be to limit the addressable
memory to a mere 64 words. How out of touch with reality do you have to be to think that
such limited memory is an asset?

So if FORTH is so stone age, primitive and extinct, why do this fOOrth thing? It goes back
to the heart of fOOrth and FNF. Remember, fOOrth is not FORTH. In spite of its problems,
the expressive elegance of FORTH cannot be denied. The fOOrth system is an attempt to
project where FORTH might have gone had it supporters been more progressive. The
fOOrth system is dedicated to destroying limitations, not exalting them.

4 See http://en.wikipedia.org/wiki/Hewlett-Packard, http://en.wikipedia.org/wiki/HP_calculators, and
h ttp://www.hpmuseum.org/

5 Yes all of these things were added, but always as optional, poorly supported extensions. They were never
really part of the core language with the full support they needed.

6 See Green Arrays, Inc. at http://www.greenarraychips.com/

Page 10 of 354

http://www.greenarraychips.com/
http://www.hpmuseum.org/
http://www.hpmuseum.org/
http://en.wikipedia.org/wiki/HP_calculators
http://en.wikipedia.org/wiki/Hewlett-Packard

Given all what has been written, there is still one inescapable fact. FORTH did possess a
simplicity and clarity that made it attractive. The fOOrth language needs to retain this
essential simplicity as much as possible while avoiding the corner-cutting that made
FORTH miserable for many tasks. The fOOrth language needs to retain this sense of small,
understated elegance.

Finally, fOOrth is inspired by the development of Object Oriented7 and Message Passing8

paradigms9 pioneered in the Smalltalk10 programming language. While Smalltalk, is a fairly
obscure language today, there can be no doubt of its tremendous impact on modern
programming language thought and design.

In the following sections, the underlying principles of fOOrth will be examined to provide a
basis for a detailed look at the architecture, features, and facilities of the language system.

Goals and Principles

To move forward, fOOrth has adopted a few basic goals and principles. These are:

1) A Simple, Easy-to-Understand syntax that is none the less, expressive and compact:

◦ Source code in fOOrth is free-form with no line oriented limitations or rules.

◦ Support is given to the easy representation of common literal data such as
strings, integers, floating point numbers, rational numbers, and complex
numbers.

2) Safe Data and Data Structures:

◦ Simple, reliable arithmetic. In fOOrth, integer operations never overflow. Rational
values can be represented exactly, complex numbers are supported, and
conversions between numeric types are simple.

◦ Strings grow as needed without the need to allocate space or worry about
overflow.

◦ Data containers such as arrays and hashes grow as needed. Out of range
subscripts cannot access undefined memory regions.

3) Message Passing:

◦ In fOOrth all actions take the form of messages sent to a receiver.

◦ The routing of messages is specified by the exact type of the message.

◦ Message receivers include data items on the stack as well as the virtual machine
object associated with the current thread of execution.

◦ Messages for which no routing specification can be found, generate an error at
compile time.

4) Object Oriented Design:

7 See http://en.wikipedia.org/wiki/Object-oriented_programming
8 See http://en.wikipedia.org/wiki/Message_passing
9 See http://en.wikipedia.org/wiki/Paradigm
10 See http://en.wikipedia.org/wiki/Smalltalk

Page 11 of 354

http://en.wikipedia.org/wiki/Smalltalk
http://en.wikipedia.org/wiki/Paradigm
http://en.wikipedia.org/wiki/Message_passing
http://en.wikipedia.org/wiki/Object-oriented_programming

◦ Support class based inheritance, with a non-cyclic (single inheritance) tree
derived from a common base Object class.

◦ Support late binding and polymorphism through message interface compatibility
or “duck” typing.

5) Meta programming:

◦ Support extensible language constructs by making the compiler an accessible
part of the system.

6) Reliability:

◦ As much as is possible, invalid operations should generate errors rather than
erroneous results

◦ Errors should be detected as soon as possible.

7) Building on the host language:

◦ The fOOrth language is built upon the Ruby language. To leverage this, fOOrth
has the ability to build proxy connections to Ruby classes and facilities.

About Ruby

The fOOrth language is implemented in Ruby. The reasons for this are very simple:

• Ruby is a powerful, expressive language with introspection and meta-programming
tools that make it ideal for creating new programming languages.

• Programming in Ruby is pure joy and I'd rather not be miserable. In fact, one of the
stated goals of the language was to maximize programmer joy. Success achieved!

Now I need to make a clarification here. I speak of Ruby, not its popular offspring Ruby on
Rails. In the minds of many theses are the same thing; they are not11.

Ruby is a flexible, powerful language akin to an artist's studio with a wide choice of media,
pigments, tools, and techniques used to create masterpieces. Rails is a web server
framework, more like a government sponsored art program with strict guidelines, and
helpers to “guide” the hand of the artist to produce any work of art so long as it is a portrait
of Elvis on black velvet12. As you might gather, I really really like Ruby. Ruby on Rails, not
so much.

Special Notes of Thanks

Firstly: This project, as well as this User Guide owe a huge debt of gratitude to the
Wikipedia13 project. Throughout this guide, entries from the free encyclopedia are used to
illustrate and amplify many crucial concepts. Wikipedia is supported by donations and I

11 Time after time, most people I speak to, assume that as a Ruby developer, I must really be a Rails
developer.

12 The Rails framework has as a goal the stressing of “Convention over Configuration.” This is justified by
stating that Rails is “opinionated.” I suppose that fOOrth is opinionated too. While configuration can be
tedious at times, having conventional thinking forced on you is far far worse.

13 See http://en.wikipedia.org/wiki/Main_Page

Page 12 of 354

http://en.wikipedia.org/wiki/Main_Page

urge all to add their support. I am proud to do so myself each year.

Secondly: My thanks must go to Dave Thomas, Chad Fowler, and Andy Hunt for their
excellent work in the book “Programming Ruby 1.9 & 2.0” (aka the PickAxe book for its
cover art). The fOOrth language is written in Ruby and without the three editions of that
awesome book, my dead-ends, difficulties, and wasted effort would have been greatly
multiplied.

Furthermore, the astute reader will not fail to observe that this document is very much
fashioned in the style (if not the quality) of the PickAxe book. This imitation is my sincere
flattery of the original.

Version History

The history of version before 0.0.3 is not documented here. It can be puzzled out from the
git repository record, but it holds little value due to the extreme state of flux that was in
effect in the development process. It was not until version 0.0.3 was created that some
measure of stability and documentation existed.

Update for V0.0.3

This version finds fOOrth with much of the core functionality and an initial draft user's guide
and reference manual. This effort has taken a lot longer than was originally anticipated, but
is now ready to proceed with incremental improvements.

Update for V0.0.4

This minor version change was largely a test of the new Git branching model for
development. Some notable code enhancements included:

• Fixes for class/subclass creation mode issues.

• The 2drop and 2dup methods.

Update for V0.0.5

Enough small changes accumulated to justify a step in version. Some notable changes:

• Support for nested contexts with no mode change.

• Array and Hash literals now run in the current mode rather than always deferred.

• Added the .empty method to Array and Hash; Added .length to Hash.

• Numerous fixes for Rational math. Conversions and rounding now more intuitive.

• Added the .join and .split methods to Array.

• Added missing documentation to the Thread class.

• Arrays and Hashes now display in fOOrth format. Previously Ruby formatting was
used.

Page 13 of 354

Update for V0.0.6

Re-factored the compiler sub-system.

Update for V0.0.7

Hot fix for a re-factoring bug and inadequate testing.

Update for V0.1.0

Significant changes: The introduction of Procedure Literals as an integral part of the
compiling process. For linguistic harmony, methods like .each{ … } are now .each{{ … }} to
match the way procedure literals work with {{ … }}. This change has resulted in a large
reduction in the need for helper methods and other such kludges.

Update for V0.2.0

• Reworked the protocol of the .fmt methods and renamed them to format.

• Added the Mutex class.

• Added the Time class.

Update for V0.2.1

A minor update with a fix to method mapping, documentation upgrades and new Procedure
methods call_v, call_x, and call_vx.

Update for V0.3.0

• Added the Duration class, a whole host of methods and documentation.

• Changed the Time class to return Duration objects when computing the span of two
Time objects.

• The conventional format operation for all objects now has proper error handling
added to catch malformed format strings.

• Minor assorted User Guide updates.

• Documented most of the System Call error types.

Update for V0.4.0

• Arrays: Added the scatter/gather methods. Deprecated join/split methods. Allow any
object to be inserted with the .+left/mid/midlr/right methods. Firmed up the exclusions
on negative sizes and widths.

• Refactored the fOOrth native error codes.

• Redesigned exception handling to handle errors in a more consistent manner.

• Implemented sub-project “stack_integrity”. This aims to ensure that, in the event of

Page 14 of 354

an error, most (if not all) operations, leave the stack in a “clean” state making error
the recovery process much simpler.

Update for V0.4.1

• Added needed support for executing fOOrth directly from the command line.

• Formatting fixes for this documentation.

• Shortened class names FalseClass to False, NilClass to Nil, and TrueClass to True.

• Enhanced Array ↔ Hash compatibility.

• Added stack, queue, and deque support to the Array class.

• Deprecated the Stack class.

Update for V0.4.2

• Replaced the Readline library with the MiniReadline gem. This avoids several bugs
and issues with the former code.

• Added the .put_all and .append_all class methods to OutStream.

• Added the parse and p" methods to the String class along with a section on the
syntax of parse strings.

• Added a User's Guide chapter on using the line editor and history buffer.

• Added a chapter on Input/Output to the User's Guide.

• Added a chapter on Formatting and Parsing

• Corrected formatting between tables to avoid wasted space.

Update for V0.4.3

• Switched from the “scanf” library to the “ruby_sscanf” gem due to unresolved issues
with the former.

• Added the)pry command as an alternative to the)irb command.

Update for V0.4.4

• Added the .check and .check! methods to the Class class.

• Updated all unit and integration tests to use minitest_visible version 0.1.0.

• Comparisons with zero now use the specialized zero? method of Ruby.

Update for V0.4.5

• Added fibers, bundles, and synchronized bundles.

• Added the _FILE_ method.

Page 15 of 354

• Code name refactoring and cleanup.

• Fixes to the fOOrth standalone program and the sire debug utility.

Update for V0.5.0

• Released the fOOrth gem, updated the portable document version of this guide.

Update for V0.5.1

• Updates to Ruby gems caused a flood of warnings, which this version fixes.

Update for V0.5.2

• Procedures can now have local values and variables.

• Code clean-up and refactoring.

• Numerous corrections to this documentation.

Update for V0.5.3

• Updated the _FILE_ method to return nil when no file name exists.

• A multitude of updates to this guide as a result of several proof-reading scans.

Update for V0.6.0

• Added the new StringBuffer class. As of this version, instances of String are now
immutable. The StringBuffer class is a specialized, mutable subclass of strings,
specializing in buffering data.

Page 16 of 354

Installation

Ruby

The fOOrth system is written in Ruby, so, at this time, the first step in installing fOOrth is to
install Ruby. The question that then arises is what version of Ruby is required? To date,
fOOrth has been tested under:

• ruby 1.9.3p484 (2013-11-22) [i386-mingw32]

• ruby 2.1.5p273 (2014-11-13 revision 48405) [i386-mingw32]14

• ruby 2.1.6p336 (2015-04-13 revision 50298) [i386-mingw32]

• ruby 2.2.3p173 (2015-08-18 revision 51636) [i386-cygwin]

• Rubinius – to be tested!

• JRuby – to be tested too!

Given the versions that I know work, I am hopeful the 2.0.x and 2.2.x will likely work too. I
can state with a great deal of confidence that fOOrth will NOT work with any MRI 1.8.x or
older and 1.9.1 and 1.9.2 are very doubtful as well, but the confidence there is a lot less.

Installing Ruby is beyond the scope of this documentation, but some excellent references to
assist in this endeavor are:

http://www.railsinstaller.org/en

Yes, this installer does install the Ruby and the Rails web framework, but includes
comprehensive support for gem, git, devkit, rake, rdoc and other tools and is the easiest,
most comprehensive choice for Windows or Mac (pre OSX Mavericks) users.

http://rubyinstaller.org/

Please note: Some changes in security may cause difficulty, so this work around may be
helpful: https://gist.github.com/luislavena/f064211759ee0f806c88 or simply google the
phrase “Workaround RubyGems' SSL errors”

Another comprehensive Ruby installation site for Windows and useful extensions not
included above is:

https://www.ruby-lang.org/en/documentation/installation/

A comprehensive source for installing or even compiling Ruby on all platforms. This is also
a hub of information on what is available in the world of Ruby.

Of course, fOOrth is built on Ruby, so it makes sense to understand the underlying
foundation. For this this web site is invaluable: https://www.ruby-lang.org/en/.

14 Ruby 2.1.5 has serious code defects that are only resolved in 2.1.6. It is advised that the latter be used.

Page 17 of 354

https://www.ruby-lang.org/en/
https://www.ruby-lang.org/en/documentation/installation/
https://gist.github.com/luislavena/f064211759ee0f806c88
http://rubyinstaller.org/
http://www.railsinstaller.org/en

fOOrth

The fOOrth language is delivered in the form of a Ruby gem15. An easy-to-use package that
delivers code with version management facilities. This gem is hosted on the web site Ruby
Gems16. Once Ruby is installed, installing fOOrth is as simple as the following command:

gem install fOOrth

That's it! It should be that simple!

Installing from GitHub

GitHub17 is the world's social network for programmers and above all, the code they create.
With a GitHub membership (available for free), you get to rub shoulders with giants like
Google18 and Facebook19. To install fOOrth from its GitHub repository, some prerequisites
must be met:

1. Git must be installed and working.
2. Ruby must be installed and working.

All of these requirements are met if you install via the RailsInstaller.org link above but there
are numerous other ways to get these steps done. Otherwise, install Ruby (see above) and
Git (https://git-scm.com/) from your favored sources.

Once the prerequisites are out of the way simply navigate you favorite web browser to:

https://github.com/PeterCamilleri/fOOrth

and click on the handy “Clone in Desktop” button and follow the friendly instructions.

Note that this will not normally install the gem. This is easily done with the command:

rake install

This command can also be used to install updated versions of fOOrth for further testing as
development progresses.

15 This was not always true. The first version of fOOrth to be released in gem form was V0.5.0. Before then
the gem was not be available to avoid wasting a lot of repository space.

16 Ruby Gems is located at http://rubygems.org/
17 For a better introduction to GitHub please see: http://readwrite.com/2013/09/30/understanding-github-a-

journey-for-beginners-part-1 or http://www.geekgumbo.com/2012/02/13/cloning-software-from-github/
18 Please see: https://github.com/google
19 Please see: https://github.com/facebook

Page 18 of 354

https://github.com/PeterCamilleri/fOOrth
https://git-scm.com/
https://github.com/facebook
https://github.com/google
http://www.geekgumbo.com/2012/02/13/cloning-software-from-github/
http://readwrite.com/2013/09/30/understanding-github-a-journey-for-beginners-part-1
http://readwrite.com/2013/09/30/understanding-github-a-journey-for-beginners-part-1
http://rubygems.org/

Contributing

Contributions to the fOOrth project should be made via GitHub. A summary of the
recommended procedure for doing so follows:

1. Fork it
2. Switch to the development branch ('git checkout development')
3. Create your feature branch ('git checkout -b my-new-feature')
4. Do amazing things! Don't forget to write lots of tests!
5. Commit your changes ('git commit -am “Add some feature”')
6. Push to the branch ('git push origin my-new-feature')
7. Create a new Pull Request

It is strongly encouraged to apply all new coding efforts to the development (or a feature)
branch and not master.

Plan B

Go to the GitHub repository and raise an issue calling attention to some aspect that could
use some TLC or a suggestion or an idea. Apply labels to the issue that match the point
you are trying to make. Then follow your issue and keep up-to-date as it is worked on. All
input are greatly appreciated.

Running fOOrth

Once fOOrth is installed, there are several options for running the language environment.
These are:

fOOrth:

As of version 0.4.1, when the fOOrth gem is installed, the language can be accessed from
the command line by simply entering:

fOOrth

Like other command line programs, fOOrth supports command line parameters. These are
listed with the -h option:

fOOrth available options:

--help -h -? Display this message and exit.
--load -l <filename> Load the specified fOOrth source file.
--debug -d Default to debug ON.
--quit -q Quit after processing the command line.
--show -s Default to show results ON.
--words -w List the current vocabulary.

Note that on Windows machines, the case of the command does not matter. On Linux and
others, you will need to type “fOOrth” with the correct, quirky capitalization.

Page 19 of 354

Rake:

From the base folder of the gem (where the file rakefile.rb is located) simply enter the
following from the command prompt:

rake run

This will then run up an interactive, command line session in fOOrth. Command line
arguments are not supported by this option. In addition, several other rake tasks are
available. These are listed with the “-T” (case sensitive) option:

C:\Sites\fOOrth>rake -T
rake build # Build fOOrth-0.4.5.gem into the pkg directory
rake clean # Remove any temporary products
rake clobber # Remove any generated files
rake clobber_rdoc # Remove RDoc HTML files
rake console # Fire up an IRB session with fOOrth preloaded
rake install # Build and install fOOrth-0.4.5.gem into system gems
rake install:local # Build and install fOOrth-0.4.5.gem into system
gems...
rake integration # Run tests for integration
rake rdoc # Build RDoc HTML files
rake reek # Run a scan for smelly code!
rake rerdoc # Rebuild RDoc HTML files
rake run # Run an Interactive fOOrth Session
rake test # Run tests
rake vers # What version of fOOrth is this?

Demo.rb:

In the base folder of the gem there is a file demo.rb. If the fOOrth source code has been
cloned, this is a useful way to access the system for testing or experimentation purposes.

ruby demo.rb

The demo program accepts all the same option switches as the fOOrth program above,
plus one additional one. The “local” option will cause the demo program to ignore any
installed fOOrth gems and instead use the local copy. Note that this option must come
before any other options. On start up, the demo program displays from where fOOrth was
loaded:

C:\Sites\fOOrth>ruby demo.rb local

Option(local) Loaded fOOrth from the local code folder.

Welcome to fOOrth: fO(bject)O(riented)rth.

fOOrth Reference Implementation Version: 0.4.4

Session began on: 2016-02-24 at 10:09pm

>

Page 20 of 354

Testing

No code is well written that does not include a comprehensive set of tests and fOOrth is no
exception. The tests in fOOrth are divided into two main sections: the unit tests which focus
on testing the underlying Ruby support code and integration testing which takes a more
holistic approach and largely tests fOOrth with fOOrth code. To run these unit and
integration tests, respectively, use the following commands:

rake test
rake integration

Known Issues

When testing under MRI Ruby 2.1.5, there is a known issue with the integration test suite.
In particular, if the internal rake command that launches the test exceeds 1022 characters,
the test will hang with no error. The only way to abort this error is to interrupt the test,
typically by hitting a control-C character.

As a work-around, the names of the integration test files have been given a bit of a trim (the
word library was shortened to lib) in order to limbo dance under the 1022 character
limitation.

A shift to version 2.1.6 eliminates this issue.20.

Source Archive

The source code archive for fOOrth may currently be found on the github repository at the
address: https://github.com/PeterCamilleri/fOOrth. See Appendix C – GIT for more details
on the use of branching within the project.

20 Development is currently proceeding with Ruby versions 2.1.6. and 2.2.3

Page 21 of 354

https://github.com/PeterCamilleri/fOOrth

Page 22 of 354

Command Entry

The fOOrth language system supports an interactive, command line mode of operation.
This takes the form in this guide of an interaction “snap-shot” like the following:

>4 5 + 2 * .
18
>

For clarity, user input is shown bold and underlined. This emphasis is for clarity in the text
only, and does not occur in the actual interactive session.

Command line input in fOOrth is facilitated by a simple line editor with command history.
The available editing and history commands are listed below:

Command Windows Other21

Enter Enter Enter

Left Left Arrow, Pad22 Left Left Arrow, Ctrl-B

Word Left Ctrl Left Arrow, Ctrl Pad Left Ctrl Left Arrow, Alt-b23

Right Right Arrow, Pad Right Right Arrow, Ctrl-F

Word Right Ctrl Right Arrow, Ctrl Pad Right Ctrl Right Arrow

Go to start Home, Pad Home Home, Ctrl-A

Go to end End, Pad End End, Ctrl-E

Previous History Up Arrow, Pad Up Up Arrow, Ctrl-R

Next History Down Arrow, Pad Down Down Arrow

Erase Left Backspace, Ctrl-H Backspace, Ctrl-H

Erase Right Delete, Ctrl-Backspace Delete, Ctrl-Backspace

Erase All Left Ctrl-U

Erase All Right Ctrl-K

Erase All Escape Ctrl-L

End of Input24 Ctrl-Z Alt-z

Auto-complete Tab, Ctrl-I Tab, Ctrl-I

21 The label "Other" is an umbrella that bundles together the Linux, Mac, and Cygwin platforms.
22 References to Pad keys under Windows assume that the Num Lock is not engaged.
23 On non-Windows systems/terminals that lack an “Alt” key, Alt-letter keys may be emulated by typing an

Escape-letter sequence. For example Alt-z becomes Escape then z.
24 The End of Input command closes the command line session and exits the interactive session.

Page 23 of 354

The auto complete feature completes a partially typed command with commands starting
with the text typed from a list of all available commands. For example “cl” would tab cycle
between “class:”, “clear”, and “clone”.

Page 24 of 354

First Steps

The fOOrth system can operate in a number of ways, but the classic mode is as an
interactive programming environment. In this interactive system, the user enters commands
in a text session. These are executed and any results appear as output to the screen. For
example:

>4 5 + .
9
>

The “>” is a command prompt, the code entered was “4 5 + .” and the output was “9”.
Drilling down a little deeper, fOOrth uses postfix notation, sometimes referred to as reverse
polish notation25 26. In more conventional languages, infix or algebraic notation is used. To
add 4 and 5 we would write 4 + 5. The addition operator being infixed or between the
operands. In postfix notation, the operands come first and the operator follows or is
postfixed. Thus “4 5 +”.

Now infix algebra requires all sorts of complex operator precedence rules as well as
parenthesis to override those precedence rules. Postfix notation needs no such complexity.
Postfix notation is well supported by a simple stack27 data structure and this is built into
fOOrth in the form of its data stack.

Consider the example code in greater detail yet:

Tokens 4 5 + .

Output '9'

Data Stack
4 5 9

4

Expressions that require parenthesis in infix notation, are written without them in postfix
notation. Consider the following expressions:

Infix Postfix Result

2+3*4 2 3 4 * + 14

(2+3)*4 2 3 + 4 * 20

25 http://en.wikipedia.org/wiki/Reverse_Polish_notation
26 The reason it is called Reverse Polish Notation (RPN) is that it is the reverse of the prefix notation created

by Polish logician Jan Łukasiewicz (see http://en.wikipedia.org/wiki/Jan_%C5%81ukasiewicz), whose
name is utterly unpronounceable by non-Polish speakers. I know. I tried. Even with Polish coaching, I
never got it right.

27 http://en.wikipedia.org/wiki/Stack_(abstract_data_type)

Page 25 of 354

http://en.wikipedia.org/wiki/Stack_(abstract_data_type)
http://en.wikipedia.org/wiki/Jan_%C5%81ukasiewicz
http://en.wikipedia.org/wiki/Reverse_Polish_notation

Note how the postfix version is simply read from left to right without having to jump about
the expression and apply complex rules. So far, at this level, fOOrth appears to be identical
to FORTH. However this is not the case. To understand how this is so, consider the original
addition of 4 and 5 at a deeper (but still abstract) level, contrasting the actions of fOOrth
with a hypothetical FORTH implementation.

Language
Tokens

Abstract Pseudo-Code Generated

FORTH fOOrth

4 Push_integer 4 Push_integer 4

5 Push_integer 5 Push_integer 5

+

T1 = Pop_integer
T2 = Pop_integer

T3 = Add_integers T2 ,T1

Push_integer T3

T1 = Pop_object
T2 = Pop_object
T3 = T2.Add(T1)
Push_object T3

.
T1 = Pop_integer
Print_integer T1

T1 = Pop_object
T1.Print_object

In FORTH, the + operator is hardwired as the integer addition operator. In fOOrth, the +
operator is a message sent to a data item (or object) on the stack. The implementation of
that operator is determined by how that object is programmed to respond to that message.

When incorrect data are sent to the FORTH “+” or the “.” words, they blindly proceed
without regard for the incorrect results generated. FORTH has little to no error checking
and usually handles errors by hanging or crashing. In fOOrth, each message that is sent,
must be understood by its receiver. Errors are reported as soon as they occur.

Page 26 of 354

The Syntax and Style of fOOrth

Syntax

In most programming languages most of the outline of the code and its major control
structures is a function of the syntax enforced by the parser. In languages like Smalltalk,
FORTH, and fOOrth this is not the case. The parser only supports the barest essentials
required to create expressions, the rest is a consequence of the actions taken by those
expressions. In FORTH, the only constructs recognized by the parser are code “words” and
numeric literals. In fOOrth, a bit more is done with the parser supporting “words” (aka
“methods”), literal values, and comments. Thus syntax plays a minor role in fOOrth. It is
more semantic than syntactic in nature.

Spaces

In general, fOOrth language tokens or words are separated by spaces. Other languages
allow operators and punctuation to abut identifiers and literal values. In fOOrth this is
generally not permitted. Thus

4 5 + . // Correct, prints out 9

4 5+. // Incorrect, produces the error F10: ?5+.? as in “what's this?”

In fOOrth, there are three exceptions to this rule: Comments, String literals and Numeric
literals.

Comments

The fOOrth language supports two types of comments. Embedded comments may be
placed inline between other language elements as in this silly example of how not too add
comments to your code:

4 (four) 5 (five) + (add) . (print)

Note that unlike FORTH, there is no need to place a space after the leading “(“ character.
The other form of comment is lifted from C++ and is started a “//” and ends at the end of the
line.

4 5 + . // Prints out 9!

While this example has an extra space after the //, this is not required.

Page 27 of 354

String Literals

In fOOrth special support is provided for embedded string literals. Any fOOrth method that
ends with a " character is assumed to contain an embedded string. No space is required
between the the " and the start of the string. The string ends with a matching trailing "
character. Some examples of methods with embedded strings are:

."Hello World" // Print Hello World

)"ls -al" // Shell out the command: ls -al

"ABCD" // The string literal "ABCD"

"ABCD"* // The string buffer literal "ABCD"

Further discussion of string literals is found in sections String – String Literal and
StringBuffer – StringBuffer Literal below.

Numeric Literals

Many sorts of numeric literals require various sorts of punctuation as part of the number
being specified. These as placed inline with no spaces as in these examples:

-10 99.1 -3.0E21 1/3 2+3i -2-2i

Further information on these literals is found in the sections “Complex”, “Float”, “Integer”,
and “Rational”.

Procedure Literals

In fOOrth special support is provided for embedded procedure literals. Any fOOrth method
that ends with a {{ character sequence is assumed to contain an embedded procedure or
code fragment. A space is required between the the {{ and the start of the code in the
procedure. The string ends with a matching trailing }} sequence. A space is needed there
too, between the end of the code and the }}.

Some examples of methods with embedded procedures are:

{{ dup + }}

array_value .map{{ v dup * }}

"name" Outstream .append{{ ~"Hello" }}

Page 28 of 354

A fOOrth Calculator

Since fOOrth was in part inspired by the powerful RPN calculators manufactured by
companies like Hewlett Packard, let's start delving deeper into fOOrth using its interactive
mode as a kind of super-calculator.

The Basics

To begin, run up fOOrth (see Running fOOrth above). Lets see what comes up initially.

C:\Sites\fOOrth>foorth
Welcome to fOOrth: fO(bject)O(riented)rth.

fOOrth Reference Implementation Version: 0.5.1

Session began on: 2016-04-04 at 01:05pm

>

The last line has a “>” which is a prompt for input.

Improved Visibility

To facilitate this use of the language, it helps to see what data is on the stack. To do this we
now enter the)show command28.

>)show

[]
>

Also note the [] after the command. This is a data dump that will help us keep track of the
contents of the stack. No data is shown between the brackets because at this time the data
stack is empty.

Interactive Calculation

Lets dive right in and try some calculating:

>4 5 6

[4 5 6]
>*

[4 30]
>+

[34]
>.

28 To restore normal operation, the)noshow command is available.

Page 29 of 354

34
[]

In the above, the numbers 4 5 6 are entered to the stack, then 5 and 6 are multiplied, then
4 and 30 are added. Finally, the result, 34, is printed out to the screen (with the “.” dot
command), leaving an empty stack once more.

Naturally, computations are not limited to integer values, but may include floating point,
rational and even complex data. Some example computational sequences with these data
types are show in the next screen capture sequence:

>4.0E3 50.0 6000.0

[4000.0 50.0 6000.0]
>*

[4000.0 300000.0]
>+

[304000.0]
>.
304000.0
[]
>1/2 2/3 4/5

[1/2 2/3 4/5]
>*

[1/2 8/15]
>+

[31/30]
>.
31/30
[]
>1+2i 3+4i 5+6i

[1+2i 3+4i 5+6i]
>*

[1+2i -9+38i]
>+

[-8+40i]
>.
-8+40i
[]
>

The fOOrth language supports many common math operations. In addition to the four basic
operators (add +, subtract -, multiply *, and divide /) there are (remainder mod,
exponentiation **) as well as trigonometric, logarithmic and other operators too numerous to
mention. Most will be found in the class reference section for the Numeric class.

Page 30 of 354

Stack Manipulation

All RPN calculators (and even most non-RPN ones) include a number of operations for
manipulating the stack. In fOOrth, these operations are pretty much lifted verbatim from
FORTH. These operations are performed directly by the Virtual Machine, again, just like
FORTH would have done. Here are some brief examples of the most common sorts of
operations plus a look at them in action interactively:

drop – discard the top element of the stack.

>1 2 3

[1 2 3]
>drop

[1 2]

dup – duplicate the top reference or value. Note that any referenced data is NOT
duplicated. See the section Cloning Data for further details.

>"apple"

["apple"]
>dup

["apple" "apple"]

nip – grab the second element of the stack and discard it.

>1 99 2

[1, 99, 2]
>nip

[1, 2]

over – grab the second element of the stack and push a duplicate of it to the top of the
stack.

>"apple" "pie"

["apple" "pie"]
>over

["apple" "pie" "apple"]

pick – pick the stack element indexed by the top stack element and make a duplicate of
that the new top element of the stack.

>1 2 3 4

[1 2 3 4]
>2 pick

[1 2 3 4 3]

Page 31 of 354

swap – exchange the top two elements of the stack. Just like the old x↔ y calculator key

>1 2

[1 2]
>swap

[2 1]

tuck – take the top element of the stack and tuck a duplicate of it under the second
element.

>1 2
[1 2]
>tuck

[2 1 2]

The Return Stack

The astute reader and scholar of FORTH will note the absence of the FORTH return stack.
Quite simply, the return stack is not necessary in fOOrth and would serve little purpose.
Early versions of fOOrth did indeed have such a stack, but it has been a long time since it
was utilized in anyway. In classical FORTH, the return stack serves three purposes:

1. To store return addresses for word calls. In fOOrth this is handled by the Ruby virtual
machine.

2. To store context for control structures. In fOOrth the context mechanism provides for
a far richer and more reliable set of control, compile, and data structures.

3. As an escape valve when the stack has become too crowded and an need to put
data “someplace” brings the return stack into service. In fOOrth local and instance
variables provide a much more flexible and less error prone alternative. In addition,
the object oriented concept of “self” often allows for a great deal of code
simplification.

As can be seen, none of the traditional uses for a return stack remain, so it was long past
time for it to stop being a thing.

Programming

The very best calculators not only excelled at computations, they also allowed actions to
chained together and stored. They were programmable. This feature greatly extends the
reach of these devices. The fOOrth language calculator is eminently programmable.

Let us start with the simplest form of programming, the creation of virtual machine methods.
This closely corresponds to the creation of “words” in FORTH. As an example lets us create
a very simple method called double that doubles a value. The transcript follows:

>: double dup + ;

[]

Page 32 of 354

>4 double .
8
[]
>"apple" double .
appleapple
[]
>

The colon is used to start a definition on the virtual machine. This is followed by the name
of the method, in this case “double”. The body of the definition follows and finally the semi-
colon closes off the definition. This is all classic FORTH code.

When we enter 4 double . we get an answer of 8, just as expected. The differences to
classic FORTH begin to show when we enter the "apple" double . command. Instead
of an error or some crazy number, or a crash, we get the string “appleapple”. The double
method “doubled up” the string.

This is a result of the fact the the + operator in the double method is not hardwired to
integer addition as it would be in FORTH, but is sent to the receiver where it is processed
according to the rules of that receiver. For an integer, that is integer addition. For a string
that is string addition, usually called concatenation.

Control Structures

Now recording programming steps is all well and good, but any decent calculator also has
the ability to make decisions and perform repetitive tasks, and fOOrth does not disappoint!

The if statement:

While a calculator might have settled for a conditional “goto” statement, fOOrth has a fully
structured “if” statement. It is in RPN however so the Boolean expression comes before the
“if” operator as in this example:

>: is_five 5 = if .”It is five!” else .”Nope, it is not five” then ;

>4 is_five
Nope, it is not five
>5 is_five
It is five!

In this example, a method called is_five is created that takes different actions based on a
test of the input argument. The “if” statement defines two local methods, “else” and “then”. A
more formal look at the “if” statement is:

<boolean expression> if <true clause> {else <false clause>} then

Where the { } indicate an optional component.

The switch statement

Now, fOOrth, FORTH and Smalltalk share a shortcoming. They all have difficulty dealing
with chained if then elsif elsif elsif end situations. They tend to cascade many levels of

Page 33 of 354

nesting inside the “else” clauses. For a real example of this the following code is presented.
This ugly_if29 code uses nested “if” statements to select from three choices with a default.

// ugly_if.foorth – ugly nested if statements
: choose_path
 dup 1 = if
 drop ."path 1"
 else
 dup 2 = if
 drop ."path 2"
 else
 dup 3 = if
 drop ."path 3"
 else
 drop ."Invalid path selected"
 then
 then
 then
 cr ;

Note the “creeping” indenting of the code, a reflection of the nesting of the control
structures. To alleviate this problem fOOrth has the switch construct. Consider instead, the
following snippet30 of code:

// switch.foorth -- switch statement sample
: choose_path
 switch
 dup 1 = if drop ."path 1" break then
 dup 2 = if drop ."path 2" break then
 dup 3 = if drop ."path 3" break then
 drop ."Invalid path selected"
 end cr ;

The purpose of the switch … end control structure is to group together a number of
statements. In addition to the “end” keyword, the switch clause defines the “break” verb.
The purpose of the break (and its related ?break) verb is to skip past any remaining
statements to the just past the “end”.

When run (both versions produce the same output, but switch.foorth is shown in this
example) we see:

>)load"docs/snippets/switch.foorth"
Loading file: docs/snippets/switch.foorth
Completed in 0.0 seconds

>1 choose_path
path 1

>2 choose_path
path 2

>42 choose_path
Invalid path selected

29 The file is ugly_if.foorth which may be found in the docs/sippets folder.
30 The file is switch.foorth which may be found in the docs/sippets folder.

Page 34 of 354

The do statement

Another major feature of a good programmable calculator is the ability to automate
repetitive operations. In fOOrth, the “do” statement borrows heavily from FORTH, but there
are some crucial differences. A classic snippet of code might look like this:

>0 10 do i . space loop
0 1 2 3 4 5 6 7 8 9

This prints out the numbers from 1 through 9 to the terminal session. The “do” and “ loop”
commands mark the boundaries of the loop; The “i” command is used to retrieve the
current loop counter value. For nested loops, the “j” command retrieves the value of the
outer loops counter value. By default, the “loop” command adds one to the loop value. For
more flexible looping, the “+loop” command allows an arbitrary increment value to be
specified.

So far, fOOrth “do” loops are just like FORTH. However, a significant difference between
fOOrth and FORTH is how the end condition is determined. In FORTH, the loop terminates
when the current loop value is exactly equal to the end value. In fOOrth, the condition is
tripped when the current loop value is greater than or equal to the end value. An example of
this in action is the following broken code:

>10 0 do i . space loop

In fOOrth, this code does nothing because the end condition is met at the start of the loop.
In FORTH it goes looping off crazily until the loop counter overflows and counts up to zero.
That can be a very long time indeed and is as close to an infinite loop as does not matter.

-i and -j

In solving one problem, often a new problem is created, and this is no exception. The
astute reader will be wondering how a loop would be constructed that counts backwards!
The broken code above does nothing and so does the classical way of reverse counting in
FORTH:

>10 0 do i . space -1 +loop

To resolve this issue, fOOrth provides reverse counter versions of the loop variables. The
reverse counter for “i” is “-i” and the reverse counter for “j” is “-j”. Thus the fOOrth version of
this code is simply:

>0 10 do -i . space loop
9 8 7 6 5 4 3 2 1 0

Now both the forward and reverse loop variables are available so it is possible to process
both directions at once in a single loop. For example:

>0 10 do i -i * . space loop
0 8 14 18 20 20 18 14 8 0

Page 35 of 354

A simple example of looping in action can be seen in the times_table31 example file. Here is
the source code:

// Print out a classic times table.

cr
." * |" 1 13 do i f"%3d " . loop cr
."----+" "-" 47 * . cr

1 13 do
 i f"%2d |" .

 1 13 do
 i j * f"%3d " .
 loop

 cr
loop
cr

Most of this code is devoted to making the output look nice, but the core of the code are the
nested do loops both counting from 1 to 12. As can be seen, the inner loop counter is
accessed via the “i” method and the outer counter is accessed via the “j” method. And here
is the output!

>)load"docs/snippets/times_table"
Loading file: docs/snippets/times_table.foorth

 * | 1 2 3 4 5 6 7 8 9 10 11 12
----+---
 1 | 1 2 3 4 5 6 7 8 9 10 11 12
 2 | 2 4 6 8 10 12 14 16 18 20 22 24
 3 | 3 6 9 12 15 18 21 24 27 30 33 36
 4 | 4 8 12 16 20 24 28 32 36 40 44 48
 5 | 5 10 15 20 25 30 35 40 45 50 55 60
 6 | 6 12 18 24 30 36 42 48 54 60 66 72
 7 | 7 14 21 28 35 42 49 56 63 70 77 84
 8 | 8 16 24 32 40 48 56 64 72 80 88 96
 9 | 9 18 27 36 45 54 63 72 81 90 99 108
10 | 10 20 30 40 50 60 70 80 90 100 110 120
11 | 11 22 33 44 55 66 77 88 99 110 121 132
12 | 12 24 36 48 60 72 84 96 108 120 132 144

Completed in 0.21 seconds

Now we're all ready for those math tests!

The begin statement

The “do” loop is great for cases where the iteration action is based on counting. For loops
not based on counting there is the “begin” statement. The “begin” keyword is balanced
against one of the following locally defined terminating keywords:

31 The file is times_table.foorth which may be found in the docs/sippets folder.

Page 36 of 354

• begin … until – loops until the top of stack is true.

• begin … again – loops indefinitely

• begin … repeat – same as above.

Now it will be noticed that two of the configurations loop indefinitely. This is not desirable, so
to handle this case the “while” verb exists. The “while” method exits the loop if the top of
stack is false. A begin … {until/again/repeat} loop may have multiple while sub-clauses.

A simple (simplistic) example of this type of loop in action is seen in the int_log232 snippet:

// A simple integer log2
: ilog2 .to_i 2/ 0 swap
 begin
 dup 0> while
 2/ swap 1+ swap
 again
 drop ;

A sample run is shown below:

>)load"docs/snippets/int_log2"
Loading file: docs/snippets/int_log2.foorth
Completed in 0.005 seconds

>8 ilog2 .
3
>18 ilog2 .
4
>0 ilog2 .
0
>1 ilog2 .
0
>3 ilog2 .
1
>4 ilog2 .
2

Data Memory

Even the most rudimentary calculators are equipped with some data storage, even if it is
the primitive STO, RCL, M+, M-, and MCLR. In real programming systems, data storage is
rather more complex, more than can fit into this already too long section. In fOOrth,
considerable flexibility exists in the use of data memory. The following section examine this
topic in several categories.

32 The file is int_log2.foorth which may be found in the docs/snippets folder.

Page 37 of 354

Page 38 of 354

Data Storage in fOOrth

This section needs to cover several separate but interacting concepts: Typing, Scoping,
Referencing, and Mutating. Since these concepts all work together, it is not possible to
present useful examples without referring to material not yet covered. For this reason, most
of the examples are at the end of this section.

While examining those examples, it may be helpful to refer back to the earlier sub-sections.

Typing

While the data itself is strongly typed in fOOrth, the data storage (variables etc) are not.
Data of any sort may be placed into a variable. This closely reflects how Ruby does things.
FORTH in contrast is a completely type less language with no type checking at any point or
on any level.

All of this begs the question though: What is a data type? In fOOrth, data types are
compatible if they respond to the required set of messages and produces the expected
results. This is covered in more detail later, but for now we can simply say that the type of a
datum is determined by the operations it supports. This is often called Duck Typing33. Again,
fOOrth borrows heavily from Ruby.

Declarations

In Ruby, there are no formal declarations of variables. There are times when the extreme
flexibility of Ruby forces the programmer to write a preemptive assignment statement to
force the language to do the right thing, but there are no variable declarations34. In fOOrth,
variables are always declared and they are always given an initial value. The general form
of one of these declarations is:

<value> <defining_word:> <variable_name>

The details of this declaration are filled in by the following sections.

Scoping

In all programming languages, variables have a life span, or scope of existence. The
fOOrth language supports four scoping options. These are described below:

Local Scope

The local scoping option allows variables to exist locally within a single method or
procedure. Typically, local variables are created near the beginning of the method, their
initial values may be literals, computed values or may be taken from the stack.

33 From the adage: If it quacks like a duck, swims like a duck, and waddles like a duck... it's a duck!
34 Many think that the attr_reader, attr_writer, and attr_accessor macros of Ruby are variable declarations,

but they are not. They simply define access methods for a variable, not the variable itself.

Page 39 of 354

Methods: val: and var:

Regex for valid local variable names: /^[a-z][a-z0-9_]*$/35

Scoping: Local variables are only accessible inside the context they are defined in, after the
point in the code where they are defined. After that context goes away, so do the local data.
Here are two examples of how this can go badly:

: foo val: a 0 10 do i a + loop ; a
: bar {{ 17 val: a }} a ;

Both of these result in this error code: F11: ?a?. In these (rather contrived) examples, when
an attempt is made to access the value “a” outside its context, an error occurs.

Instance Scope

Instance scoped variables are associated with instances of objects. As such, these
methods are only accessible inside methods of those objects. Instance variables are
distinguished by the leading “@” sign in their names. Instance variables can only be
created in such methods as well, with the .init method being the most popular since it is
called to initialize a new instance of the object.

Methods: val@: and var@:

Regex for valid local variable names: /^@[a-z][a-z0-9_]*$/

Notes: Instance values/variables are only accessible in environments where the “self” entity
is the object where they exist. This is the case of a method or a where{...} clause of that
object.

Thread Scope

Thread variables are associated with the thread in which they are defined. As such they are
accessible anywhere within that thread. Thread variables are distinguished by the leading
“#” sign in their names. Thread variables may be created at any point within the thread.

Methods: val#: and var#:

Regex for valid local variable names: /^#[a-z][a-z0-9_]*$/

Notes: When a new thread is created, it receives a copy of the thread variables in the
thread that created it.

Global Scope

Global variables may be accessed at any point after they have been defined. Global
variables are distinguished by the leading “$” sign in their names.

Methods: val$: and var$:

Regex for valid local variable names: /^\$[a-z][a-z0-9_]*$/

Notes: Global variables are considered bad in many circles.

35 See Appendix B for more information on Regular Expressions.

Page 40 of 354

Referencing

This one is a bit tricky. Most programming languages have the concept of the value of a
variable and a reference to a variable. In “C”, documentation speaks of “lvalues” and
“rvalues”. These labels describe the role (left and right value) played in the classic “C”
assignment statement:

<lvalue> = <rvalue>;

In “C” there is the further concept of being able to create a reference to a variable using the
“&” operator. This operator allows the programmer to create a reference (via a pointer) to a
the variable in question.

Ruby on the other hand has no explicit support for references. Variables themselves are
always values and there exists no way to generate a reference to a variable. It is true that
the Ruby interpreter must have access to a reference to a variable in order to perform an
assignment, but this capability is kept locked up in the internals of the language.

In fOOrth, the ability to use references and values is explicitly available to the programmer
through the “var” and “val” keyword roots36. To create a variable that holds a reference, use:

<value> var: <var_name>

For example:

0 var: score

To create a value simply substitute the var: version as in this example:

10 val: max_score

The first example creates a variable “score” that is a reference to the value, currently 0. The
second creates a variable “max_score” with a value of 10. Next we examine how
referencing affects the code that is needed to use these variables:

Task var val

Sample Declarations 0 var: score 10 val: max_score

Just what is being declared?
A method (called score) that
pushes a reference to the value
(0) onto the stack.

A method (called max_score)
that pushes the value (10) onto
the stack.

Retrieve the data. score @ max_score

Update the value of the variable. 1 score ! --37

Get a reference to the variable. score --38

36 For simplicity, the examples here assume local scope, but the examples would work in the same manner
with global, thread, or instance scoping.

37 This operation is not available for value variables.
38 This operation is also not available for value variables.

Page 41 of 354

As can be seen in the above table, var scope is more capable than val scope. It is also
slower, more complex, and more verbose. For most uses, the greater capabilities of the var
scope are not required. Thus it is expected that for most applications val scope will be the
predominant form utilized.

In most programming languages, including Ruby, val or value variables are called
constants. In Ruby, this title is a falsehood due to the issue of data mutation, covered in the
next section.

Mutation

In motion pictures, mutants are sometimes the good “guys”, but regardless of that,
wherever mutations are involved, trouble always seems to follow them. That also holds true
for fOOrth and the underlying Ruby base language. In fOOrth, all datum are divided into
two major classifications: Immutable and Mutable. Simply put, immutable values are those
that retain their value when operations are applied to them. Mutable values do not have this
property. In fOOrth, numbers (of all sorts), strings, boolean values (true and false) and the
special value nil, are all immutable. Everything else is mutable. It is noteworthy that while
character strings are immutable, string buffers fall into the mutable camp.

For comparison, consider this first example with immutable data:

>5 val$: $iv $iv .
5
>$iv 6 + .
11
>$iv .
5

In this example, a value of 5 is created. An addition operation with 6 is performed, yielding
11. Nonetheless, the original value of 5 is NOT mutated by this operation. Now consider a
similar scenario with mutable data:

>"Hello"* val$: $mv $mv .
Hello
>$mv " World" << .
Hello World
>$mv .
Hello World

In this case, the string variable IS mutated by the concatenation “<<”, operator. If one where
relying on the $mv value to be constant, this would be a severe setback. Now to be clear,
there is a non-mutating concatenation operator, “+”. As shown below, it does NOT mutate
the string:

>"Hello"* val$: $mv $mv .
Hello
>$mv " World" + .
Hello World
>$mv .
Hello

Page 42 of 354

So why have both? Why not always avoid the mutation? Simply put, the non-mutating
version is slower because it must create a copy of the string to avoid modifying the original.
There is a trade-off between mutation and efficiency. With immutable data, there is no need
for trade-offs or two versions of operations. Operations on immutable data are always
immutable AND efficient!

The fOOrth language does provide ways to explicitly control or at least work around
mutation issues. This is discussed in the section on Cloning Data.

Data Storage Examples

Now that all of the essential concepts have been introduced, let us examine some
examples of fOOrth data storage in action.

The first example shows the use of local values, both with and without mutation. Consider a
method that takes an array and a pivot value and outputs two arrays. The first with values
less than the pivot and the second with values greater than or equal to the pivot. The
following code is presented:

// Filter values in an array.
// [an_array value] filter [array_less_than_pivot array_greater_equal_pivot]

: filter
 val: pivot [] val: lt [] val: ge
 .each{{
 v pivot < if lt else ge then
 v << drop }}
 lt ge ;

The first line creates three local values; pivot aptly named for our pivot value. The pivot
value is taken from the stack and is the pivot argument to the method. Next, lt and ge, two
empty arrays to hold values less than and greater or equal to pivot. The next line iterates
over each element in the input array (taken from the stack) and mutates either lt or ge
based on the comparison of the loop value v with the pivot. After the mutation is done, the
drop cleans up the stack. The last line places the results of the filtering operation onto the
stack. Note that the pivot value is not mutated, while the lt and ge arrays are mutated
while building the result. Also, the input array is not mutated either.

This is the code running, with the)show option enabled so we can better see the results:

>[1 2 3 4 5 6 7 8] 4 filter

[[1 2 3] [4 5 6 7 8]]

Our second example will examine the use of instance scoped variables. That is, variables
that exist within the scope of an instance of a class or as it is commonly referred to, an
object. The following code39 illustrates this:

// A Fibonacci sequencer class.

39 The file is fibonacci.foorth which may be found in the docs/snippets folder.

Page 43 of 354

// - Instance variables

class: Fibonacci

(Fibonacci .new a_fibonacci)
Fibonacci .: .init 1 var@: @a 1 var@: @b ;

(a_fibonacci .next a_value)
Fibonacci .: .next @a @ dup @b @ swap over + @b ! @a ! ;

(a_value a_value a_fibonacci .reset -)
Fibonacci .: .reset @b ! @a ! ;

//Create a generator and save its value.
Fibonacci .new val$: $fib

//Create a testing word for the generator.
: run_test 0 12 do $fib .next . space loop cr ;

."Classical Fibonacci Sequence:" cr
run_test

0.5 0.5 $fib .reset

."Modified Fibonacci Sequence:" cr
run_test

This code creates the Fibonacci class. Instances of that class have two variables @a and @b.
These contain the internalized state of the object. In typical fashion notice that there is no
direct way to read these values. Instead, they are used to compute the Fibonacci sequence
access via the .next method. The following shows the results of running this code:

>)load"docs/snippets/fibonacci.foorth"
Loading file: docs/snippets/fibonacci.foorth
Classical Fibonacci Sequence:
1 1 2 3 5 8 13 21 34 55 89 144
Modified Fibonacci Sequence:
0.5 0.5 1.0 1.5 2.5 4.0 6.5 10.5 17.0 27.5 44.5 72.0
Completed in 0.0156 seconds

Page 44 of 354

Data Collections in fOOrth

So far, our examination of fOOrth data has focused on the so called scalar values. These
are simple numbers, strings, etc. Now it's time to haul out the big guns: Collections. The
power of this category of data types lies in their ability to organize large quantities of data
simply and easily.

Collections operate in a manner similar to a library. Like a library, a collection brings
together a large quantity of data. And like a library, a collection adds that essential next
step. It has an index to the data contained therein. This index (sometimes called a key)
allows quick and efficient access to the data contained in the collection. Without this index
the data would be static, lifeless, and inaccessible.

Over the years, many types of data collections have been created for various purposes.
The fOOrth language has two major types of collection: The Array40 and the Hash41.

Arrays are collections of data values indexed by integers. In an array of size N, where N is
an arbitrary, non-negative, non-stellar, whole number, the index values from 0 through N-1.
The array data structure creates an association between the integer index value and the
data value.

In contrast, hashes are collections of data values indexed by arbitrary values42. This value
can be a number, a string or any other sort of value43. The hash data structure creates an
association between the arbitrary index value and the data value.

The values stored in both arrays and hashes may be of any data type, just like the variables
described in the previous section on Data Storage in fOOrth – Typing. In fact, the values in
an array or hash can themselves be arrays or a hashes. This feature can be very powerful
or very very dangerous!44

Arrays vs. Hashes

The topic of arrays and hashes can be quite complex, so this section is only a summary.
The goal of this section is to show how much the two have in common, as well as
highlighting the major areas where they differ.

For more details on arrays and hashes and the many methods mentioned, please see the
Reference sections on the Array and Hash classes.

A quick comparison of Arrays and Hashes is presented in the following table:

40 Please see http://en.wikipedia.org/wiki/Array_data_structure for more information.
41 Please see http://en.wikipedia.org/wiki/Hash_table for more information.
42 Hash index values are often referred to as “keys”.
43 The index value in a hash can even be an array or a hash. Mercifully, a hash cannot a be an index in itself.

The down side is that no error results, just a bunch of orphaned entries.
44 Regrettably, a hash or array is allowed to contain itself as one (or more) of its values. Therefore: Heed well

my warning! Recursion is the path to the dark side. Recursion leads to cleverness, cleverness leads to
complexity, complexity leads to suffering. [With apologies to Master Yoda]

Page 45 of 354

http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Array_data_structure

Attribute Array Hash

Store any type of data?

Supported index types? Integers Any object

Density?
Dense; All indexes from 0
to the limit are allocated.

Sparse; Only index values that
are specified are allocated.

Element Ordering? Ordered by indexes. Not ordered.

Support for literal values? See Array Literals See Hash Literals

Reading a value? See the .[]@ method

Writing a value? See the .[]! method

Is it empty? See the .empty? method

Reading an empty cell? Reads as nil

 Reads as nil by default. This
can be set with the
.new_default, .new_default{{,
.default, and .default{{ methods.

Getting the length? See the .length method

Iterating over each element? See .each{{ … }} method

Mapping each element? See .map{{ … }} method

Filtering the elements See .select{{ … }} method

Convert to an array? See .to_a method

Convert to a hash? See .to_h method

Get a list of index values? See .keys method

Get a list of data values? See .values method

Access, insert, and delete
from the “left”?

 See the “left” group of
methods

Access, insert, and delete
from the “right”?

 See the “right” group
and the << methods

Access, insert, and delete
from the “middle”?

 See the “mid” and
“midlr” groups of methods

Concatenating collections See the + method
Stack emulation?

 See moving data below. Queue emulation?

Deque emulation?

Page 46 of 354

Arrays and Hashes

Arrays and Hashes are quite different on many levels and most languages treat them very
differently. The fOOrth language goes to great lengths to make arbitrary incompatibilities go
away.

As can be seen in the above table, many operations for arrays and hashes use exactly the
same methods. Even more important is that the parameters and return values for those
methods are also harmonized45.

To further improve interoperability, several “bridge” methods have been added. These
methods make it easier to treat arrays and hashes equally.

For arrays these include: .keys, .values, .to_a, and .to_h.

For hashes they are: .map{{ … }}, .select{{ … }}, .to_a, and .to_h.

Moving Data

In some applications, data collections are used, not to store data but to move it. In most
collections, data is used while it is part of a collection. When moving data, the concern is in
putting data in and getting it out. The data is not processed while “in transit”.

The classical data structures used here are the queue46, the stack47, and the deque48 49. The
differences between these data movers is in the order in which data is insert compared to
the order in which it is removed.

The Queue

The queue is the most popular of data movers. A good analogy for a queue is a pipeline.
Products are put into it on one end and emerge at the other end in the same order. This is
called FIFO50. The basic concept of a queue is illustrated below:

45 A significant change from Ruby is the each (.each{{ … }} in fOOrth) method. In Ruby these have
incompatible parameters. In fOOrth the parameters are the same for both arrays and hashes.

46 Please see: https://en.wikipedia.org/wiki/Queue_(abstract_data_type)
47 Please see: https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
48 Please see: https://en.wikipedia.org/wiki/Double-ended_queue
49 The word deque is a portmanteau for a double ended queue. Pronounced as “deck”.
50 FIFO for First In First Out, not that other thing this acronym is sometimes used for.

Page 47 of 354

Queue

Data in transitData In Data Out

https://en.wikipedia.org/wiki/Double-ended_queue
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)

The Stack

Stacks are integral to fOOrth. In fact, fOOrth is said to be a stack based language. The
classical analogy for a stack is a stack of plates. Plates are added to the stack (the top).
The are also removed from the top-of-stack. Thus the last plate added is the first to be
removed. This is called LIFO51. The basic concept of a stack is illustrated below:

The Deque

The deque is really just a double-ended queue52. An analogy here is a deck of cards. While
shuffling, cards can be added to the top or the bottom of the deck. And like a deck with a
dishonest dealer, they can be dealt from the top or the bottom! A good way to think of a
deque is a queue with “backsies”. When an element is added you can change your mind
and take it back53. Similarly, when an element is retrieved, it can be put back into transit.
With a deque, data can come and go in any order, so there's no catchy acronym here54.
The basic concept of a deque is illustrated below:

Implementation with arrays

Traditionally, these data moving structures are implemented by specialized classes. In
fOOrth however, these tasks fall to the Array class and the so-called “deque” methods.
Since data in an array is ordered by index value, it is convenient to think of the low
numbered elements as being on the “left” and the high numbered elements as being on the
“right”55. Thus an array can be seen as:

51 LIFO for Last In First Out.
52 It is just as valid to consider it to be a double-ended stack, but “destack” lacks the panache of deque.
53 How many people wish they could “un-send” an email!
54 Not to be confused with GIGO for Garbage In Garbage Out.
55 This analogy matches with the way that arrays are traditionally written down or displayed.

Page 48 of 354

Stack

Data in transit
Data In

Data Out

Deque

Data in transit
Data In Data Out

Data InData Out

Array Contents

The left side D0 D1 ●●● DN-2 DN-1 The right side

The following diagrams illustrate the relationship between the basic data movement
operations and the fOOrth array methods that are used to implement them.

Queue Contents

.push_left D0 D1 ●●● DN-2 DN-1 .pop_right

(A Queue example)
Array .new val$: $queue // Create the queue.
42 $queue .push_left // Add the number 42
"apple" $queue .push_left // Add the string apple
$queue .pop_right . // Remove and print 42
$queue .pop_right . // Remove and print apple

Stack Contents

D0 D1 ●●● DN-2 DN-1
 .push_right
 .pop_right

(A Stack example)
Array .new val$: $stack // Create the stack.
42 $stack .push_right // Add the number 42
"apple" $stack .push_right // Add the string apple
$stack .pop_right . // Remove and print apple
$stack .pop_right . // Remove and print 42

Page 49 of 354

Dequeu Contents

.push_left
.pop_left

D0 D1 ●●● DN-2 DN-1
 .pop_right
 .push_right

(A Deque example)
Array .new val$: $deque // Create the deque.
42 $deque .push_right // Add the number 42 on the right.
"apple" $deque .push_right // Add the string apple on the right.
pi $deque .push_left // Add the number pi on the left.
"pie" $deque .push_right // Add the string pie on the right.
$deque .pop_right . // Remove from the right and print pie
$deque .pop_right . // Remove from the right and print apple
$deque .pop_right . // Remove from the right and print 42
$deque .pop_right . // Remove from the right and print 3.141...

The Stack and Queue classes

Given that the Array class has support for queues, stacks, and deques, the astute reader
will be surprised to learn that fOOrth also has explicit Stack and Queue classes. This
section examines the reasons for the existence of this duplication.

The Stack Class

The Stack class is a hold-over from the development process of fOOrth. At one point this
class seemed to make good sense. Those reasons while good, have given way to better
reasoning behind the flexible Array class.

It is for this reason that the Stack class is marked as being {Deprecated} in this guide. In
theory, at some time in the future, this class could be deleted from fOOrth. It is therefore
recommended that arrays be used to fulfill any need for explicit stack data structures in an
application.

The Queue Class

The Queue class is partly a hold-over from the development process of fOOrth. However, it
is not marked as {Deprecated}. The reason for this has to do with a very common use of
queues: inter-thread communication. While multi-threaded programming56 is beyond the
scope of this section of the guide, it suffices to say that the specialized Queue class is
designed to work in such an environment while the standard array's queue emulation is not.

Given that these two types of queues are used very differently, the basic method names are
also different. These names are shown in the following table:

56 Please see the section Multiple Nexus Programming below for more on this topic.

Page 50 of 354

Operation Array Queue Inter-thread
Queue

Add data .push_left .post

Remove data .pop_right .pend

The question may arise: Why not use inter-thread queues all the time? There are two
reasons to avoid inter-thread queues unless absolutely necessary.

1. Inter-thread queues have higher overheads. A lot of extra processing is required to
ensure correct results in a multi-threaded environment.

2. Lock-up hazards. Since inter-threaded queues have the ability to put a process to
sleep, they can also cause program lockups, fatal errors and all the other delightful
issues associated with the multi-threaded environment.

In summary, unless multi-threaded programming is involved, stick with the generic array
based queuing mechanisms outlined above.

Objects

It was stated at the outset that there are two major types of data collections, user defined
Objects are the sixth57. In fact, most would not consider traditional objects to even be a type
of data collection. That view point is too narrow. Up till now, the data collects studied have
associated data using standardized, generic mechanisms. Objects allow for something
else. Objects allow data to grouped together (see Data Storage in fOOrth – Instance
Scope) and connected with customized code. These data may in fact be arrays and hashes
and other sorts of collections, but now they can be accessed, updated, and linked together
in an application specific manner.

Thus the power of the object derived data collection is that it allows the aggregation of data
in direct support of specific application requirements.

57 In the same spirit that Douglas Adams (Please see: https://en.wikipedia.org/wiki/Douglas_Adams) wrote a
trilogy with six books in it.

Page 51 of 354

https://en.wikipedia.org/wiki/Douglas_Adams

Page 52 of 354

Cloning Data

Since some data in fOOrth are mutable, it is sometimes necessary to create copies of that
data so that operations can be performed that do not corrupt the “original” data. The fOOrth
language system has a number of data duplication methods that meet various needs.
These methods are summarized below:

Method
Stack
Before

Stack
After

Description
Time
Used

Copy Depth

dup x x x Duplicate the data without any
copying.

Least None

copy x x x' Duplicate the data with a shallow copy.
Moderate One Level

.copy x x' Replace the data with a shallow copy.

clone x x x" Duplicate the data with a deep copy.
Most All Levels

.clone x x" Replace the data with a deep copy.

Deep vs Shallow Copy

To examine the differences in the copying strategies, consider the following three different
scenarios:

1. No Copying

2. Shallow Copying

3. Deep Copying

No Copying

In the following example session, the first line creates a value, $expo with an array as value.
The first element of the array is the string “Expo” and the second element is the number 67.
To show this, the value is printed out. The second statement creates a value $ecopy with
the same value as $expo. The next two statements58 change the 67 to a 99 and append the
string “sure” to the string “Expo”. The final two statements display $ecopy (the copy) and
$expo (the original).

>["Expo"* 67] val$: $expo $expo .
["Expo" 67]
>$expo val$: $ecopy $ecopy .
["Expo" 67]
>99 1 $ecopy .[]!

>0 $ecopy .[]@ "sure" <<

58 For more information on array access words, please see the Array section below.

Page 53 of 354

>$ecopy .
["Exposure" 99]
>$expo .
["Exposure" 99]

As can be seen, both have been modified in the same way because the two values ($expo
and $ecopy) both reference the same mutable array.

Shallow Copying

This session is the same as the previous except that the .copy method is applied to the
value before it is used to create $ecopy The .copy creates a copy of the array but not the
data elements in that array.

>["Expo"* 67] val$: $expo $expo .
["Expo" 67]
>$expo .copy val$: $ecopy $ecopy .
["Expo" 67]
>99 1 $ecopy .[]!

>0 $ecopy .[]@ "sure" <<

>$ecopy .
["Exposure" 99]
>$expo .
["Exposure" 67]

As can be seen, the results are mixed. Since a copy of the array was made, the number 67
is not changed in the original. The string, “Expo” however is still mutated to “Exposure”
since no copy of it was made. Of course we could have used the non-mutating version of
string concatenation. This would have resulted in the following, somewhat longer code:

>0 $ecopy .[]@ "sure" + 0 $ecopy .[]!

Since the string is not being mutated, but instead, a new string is being created, it is
necessary to store this new string back into the array explicitly.

In this new statement, the 0 $ecopy .[]@ retrieves the existing string, the "sure" +
performs the non-mutating concatenation, and the 0 $ecopy .[]! stores the string value
just computed back into the array.

Note: For simple mutable data like strings, this shallow copy is fully sufficient to protect
against any unwanted data mutation. However, for more complex data with multiple levels
of information (like arrays, hashes, or user defined classes) a more thorough copying
method is needed.

Deep Copying

In the final example session, the .copy is replaced with .clone. This performs a deep copy
that copies the array and its contents (and any of the contents' contents etc, etc...59).

59 From “The King and I”, please see http://en.wikipedia.org/wiki/The_King_and_I

Page 54 of 354

http://en.wikipedia.org/wiki/The_King_and_I

>["Expo"* 67] val$: $expo $expo .
["Expo" 67]
>$expo .clone val$: $ecopy $ecopy .
["Expo" 67]
>99 1 $ecopy .[]!

>0 $ecopy .[]@ "sure" <<

>$ecopy .
["Exposure" 99]
>$expo .
["Expo" 67]

As can be seen, the original value $expo is not modified in anyway by changes made to its
clone in $ecopy.

Partial Copying

The clone commands in fOOrth have allowance for the fact that it is not always desirable to
copy all of the data members when a clone is made. This is handled with the
.clone_exclude method. Any object that defines this method is able to exclude certain data
from the copying process.

If the .clone_exclude is defined as a shared method for a class, then all instances of that
class share the same exclusions. On the other hand if it is defined exclusively for a single
object, only that object is affected.

The .clone_exclude method returns an array of items to be excluded from the copying
process. For most objects, these are the names of instance variables as strings. For arrays
and hashes, these are the specific index values to be skipped over during the copying.
Note that if the named variables or index values do not occur in the object being cloned, no
action is taken. Some examples follow:

(Clone exclusions in a class.)
class: MyClass
MyClass .: .init "a" val@: @a "b" val@: @b ;
MyClass .: .clone_exclude ["@b"] ;

In the above, when instances of MyClass are cloned, the variable @a will also be cloned,
while @b will not. The @b variable will be shared between the originals and the clones.

(Clone exclusions in an array.)
["apple" "banana"] val$: $test_array
$test_array .:: .clone_exclude [1] ;

In this case, when the array60 is cloned, the contents of the array except for location 1 will
also be cloned. The contents of position 1 will be shared between the originals and the
clones.

60 It should be noted that the .clone_extended method is added to the $test_array object exclusively (with .::)
and not shared by the entire Array class (with .:). In general modifying the behavior of ALL arrays is a bad
idea. The exclusive method mechanism is useful in providing finer control for this change.

Page 55 of 354

(Clones exclusions in a hash.)
{ 0 "apple" -> 1 "banana" -> } val$: $test_hash
test_hash .:: .clone_exclude [1] ;

Again in this case, the contents of the hash61 except for the entry indexed by 1 will also be
cloned. The contents of index 1 will be shared between the originals and the clones.

Permissive Copying

In Ruby, if an attempt is made to clone an immutable data item like a number, an error
occurs. The justification for this uncharacteristic strictness is not at all clear, but it does
mean that the clone operation must be applied with great care.

In fOOrth, this is not the case. When clone or copy are applied to immutable data, the data
is returned without modification or error. The reasoning here is simple. The data in question
are already immutable so nothing needs to be done. Doing nothing is not an invalid
operation. So fOOrth does precisely that and the program continues without error.

61 It should be noted that the .clone_extended method is added to the $test_hash object exclusively (with .::)
and not shared by the entire Hash class (with .:). In general modifying the behavior of ALL hashes is a bad
idea. The exclusive method mechanism is useful in providing finer control for this change.

Page 56 of 354

Input/Output

It is inevitable that no matter how beautiful the algorithms contained in a program, that at
some point, data will need to be exchanged with the mysterious entities62 that dwell in the
outside world. This is the role of the input and output subsystems discussed in this chapter.

The Console

For command line driven applications, the console is the focus of all interaction with the
user. The console is used to interact with both the fOOrth language system and with fOOrth
applications.

Console Input

The basic unit of console input is the line of text. All console data is entered interactively
with line editing and history63 commands to assist data entry. A description of the available
line editing commands may be found above in the section: The Basics:Command Entry.

The commands that support getting lines of text from the user are accept, .accept, and
accept". The only difference between these three is where the prompt comes from.

• The accept method prompts the user with a default prompt of '? '.

• The .accept method prompts with the string that is its argument. For example:
"string" .accept will get data from the user prompted by the word “string”.

• The accept" form allows the prompt to be specified using the embedded string literal.
Thus accept"string" will get data from the user prompted by the word “string”.

This is seen in the following examples:

>accept .
? test
test
>"Enter " .accept .
Enter test
test
>accept"Enter " .
Enter test
test
>

These methods let us obtain a line of text. The usual next step is process this input,
validating and converting it to a useful form. This is generally referred to as parsing. That is
the topic for the next chapter on formatting and parsing.

62 Euphemistically referred to as the “users”.
63 Note that the fOOrth language system uses a different history buffer than applications use, to keep these

two command streams separate.

Page 57 of 354

Console Output

In general, to output data to the console, information is (optionally) formatted, and then
displayed. When the output operation is completed, a newline is sent to the console to start
the next operation on a fresh line. The operations associated with console output are:

Method Summary Description

an_object . Convert the object to a string (using the default formatting)
and send that string to the console.

a_code .emit Send a character with the specified code point value to the
console.

a_string .emit Send the first character of the specified string to the console.

."text" Send the embedded “text” string to the console.

space Send a single space to the console.

a_count spaces Send a_count64 spaces to the console.

cr Send a new line command to the console.

It is common that the output will be designed in a way that is easy-to-read and pleasing to
the eye. This is generally accomplished with formatting. That is the topic for the next
chapter on formatting and parsing.

Streams of Text

One of the oldest sources of data for computers is that of files of text. They are useful for
many tasks such as program input data, persistent configuration and options settings,
intermediate work-in-progress storage, and final output data. In general, text files fall into
one of two very broad (and often overlapping) categories:

• Structured data where the text conforms to an organizing scheme for data such as
XML65 or JSON66.

• Unstructured data where the text may be organized, but lacks a formal layout or
scheme. Or the data is formatted using a custom scheme as opposed to the
standardized types listed above.

The next sections will take a look at simple, unstructured “streams” of text data.

64 Where “a_count” is a positive, whole number.
65 For more info, please see: https://en.wikipedia.org/wiki/XML
66 For more info, please see: https://en.wikipedia.org/wiki/JSON

Page 58 of 354

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/XML

Unstructured Stream File Input

Reading textual data from files is handled by the InStream class. This class establishes a
connection between the fOOrth program and an existing file that is accessible to the local
system. Using input streams successfully requires that three steps be carried out in the
correct order, and without omission. These are:

1. Opening the stream. Given the name of the file, establish a connection with it.

2. Read data from the open stream connection.

3. Profit! Close down the stream. Since opening the stream causes a change in the
state of the underlying operating system, failure to close files can cause undesired
consequences and side-effects.

The InStream class has versions of these basic operations that are fully bundled, partially
bundled, and unbundled. The following tables provide an overview of these approaches:

This one command bundles all three steps.

Open Step
"name" InStream .get_all

Opens the named file.

Read Step Automatically reads the entire file into an array of strings.

Close Step Automatically closes the file when done.

These commands bundle opening and closing the file. Reading the file is left to the coder.

Open Step

"name" InStream .open{{ (read steps go here) }}

Opens the named file and executes the embedded procedure block with
self67 set to the open connection.

Read Step(s)

The procedure block is able to access the file connection using these
short-form ~ methods:

self The active connection value. This is useful if it necessary to
pass the connection as a parameter to another method.

~gets Read a line of text from the opened file.

~getc Read a single character from the opened file.

Close Step Automatically closes the file when the procedure block is done.

67 See the chapter Self below for more information on the self concept.

Page 59 of 354

This is the unbundled option where all actions are the responsibility of the programmer.

Open Step

"name" InStream .open val: id

Opens the named file and returns an InStream value that must be
explicitly managed. In this example this is accomplished by creating a
local value named “id”68.

Read Step(s)

The program is able to access the file using these explicit methods:

id
The active connection value. This is useful if it
necessary to pass the connection as a parameter to
another method.

id .gets Read a line of text from the opened file.

id .getc Read a single character from the opened file.

Close Step

The InStream value returned by .open must be manually closed with:

id .close

Close the stream. This leaves two potential problem
areas. The first is failing to close the connection69. The
second, when the connection is closed, the value id is
now a dead value. Operations on the zombie value will
throw an error70.

Unstructured Stream File Output

Writing textual data to files is handled by the OutStream class. This class establishes a
connection between the fOOrth program and either an new, empty file or an existing file
that is ready to have text appended to it. Using output streams successfully requires that
three steps be carried out in the correct order, and without omission. These are:

1. Opening the stream. Given the name of the file, create an empty file or establish a
connection with an existing file for appending.

2. Writing data to the open stream connection.

3. Close down the stream. Since opening the stream causes a change in the state of
the underlying operating system, failure to close files can cause data loss or other
undesired consequences and side-effects.

Just like the InStream class described above, the OutStream class has versions of these
basic operations that are bundled, partially bundled, and unbundled. The following tables
provide an overview of these approaches:

68 This name was chosen for brevity in these examples. In practice a better name should be selected.
69 Please see Handling Exceptions-Tying Up Loose Ends for a discussion of the finally specifier which

addresses this issue.
70 The solution to this issue is to not make that mistake. Careful, structured design is called for here.

Page 60 of 354

These commands bundle all three steps.

Open Step

string_array "name" OutStream .put_all

Creates an empty file.

string_array "name" OutStream .append_all

Opens the named file for appending or creates one if needed.

Read Step Automatically write (or appends) the entire array of strings to the file.

Close Step Automatically closes the file when done.

These commands bundle opening and closing the file. Writing the data is left to the coder.

Open Step

"name" OutStream .create{{ (write steps go here) }}

Creates an empty file and executes the embedded procedure block with
self set to the open connection.

"name" OutStream .append{{ (write steps go here) }}

Opens the named file or creates an empty file and then executes the
embedded procedure block with self set to be the open connection.

Read Step(s)

The procedure block is able to access the file connection using these
short-form ~ methods:

self
The active connection value. This is useful if it
necessary to pass the connection as a parameter to
another method.

on_object ~ Convert the object to a string (using the default
formatting) and send that string to the file.

~"text" Send the embedded text to the file.

a_code ~emit Send a character with the specified code point value to
the file.

~space Send a single space to the file.

a_count ~spaces Send a_count spaces to the file.

~cr Send a new line command to the file.

Close Step Automatically closes the file when the procedure block is done.

Page 61 of 354

This is the unbundled option where all actions are the responsibility of the programmer.

Open Step

"name" OutStream .create val: od

Creates an empty file called “name” and returns an OutStream value
that must be explicitly managed. In this example this is accomplished
by creating a local value named “od”.

"name" OutStream .append val: od

Opens the named file or creates an empty file and returns an
OutStream value that must be explicitly managed. In this example this
is accomplished by creating a local value named “od”71.

Read Step(s)

The program is able to access the file using these explicit methods72:

od
The active connection value. This is useful if it
necessary to pass the connection as a parameter
to another method.

on_object od . Convert the object to a string (using the default
formatting) and send that string to the file.

a_code od .emit Send a character with the specified code point
value to the file.

od .space Send a single space to the file.

a_count od
.spaces Send a_count spaces to the file.

od .cr Send a new line command to the file.

Close Step

The InStream value returned by .open must be manually closed with:

od .close

Close the stream. This leaves two potential
problem areas. The first is failing to close the
connection. The second, when the connection is
closed, the value id is now a dead value.
Operations on the zombie value will throw an error.

Structured Stream File Input/Output

Structured file formats like XML and JSON allow complex internal data structures to be
represented by simple, unstructured text. This is useful for storage of that data and
communicating that data to a foreign system that may have an incompatible internal
storage representation.

In the end though, it's all just a matter of formatting and parsing, topics covered in the next
chapter.

71 This name was chosen for brevity in these examples. In practice a better name should be selected.
72 The astute reader will note the absence of an OutStream version of the od ."text" method. This is due

to the way that embedded strings are handled. In this case, the slightly longer sequence "text" od .
must be used.

Page 62 of 354

File Naming Tranquility

In the world of computing, there are two distinct approaches to the naming of files. The first
is UNIX73 camp, with a single directory tree and branches (folders) separated by slashes
(“/”). The second is the MS-DOS/Windows74 camp with a collection of lettered (A through Z)
directory shrubs (drive/media specifiers) with branches (folders) separated by back-slashes
(“\”). The root cause of this dichotomy75 can be traced to two facts:

1. The ancestors of these systems were built in isolation.

2. Successors in each camp were required to be backward compatible with previous
design choices.

To further the cause of platform harmony, the fOOrth system deals with the two
incompatibilities by ignoring the first (tree vs. shrubs) and declaring UNIX and friends the
winner in the second and using slash “/” to separate branches.

So how does this work? In practice, pretty well. Since most file specifications are relative
rather than absolute, the origin root does not come into play. Secondly, even when one
must specify a full path, most of the time, it will be on the same media, so a drive specifier
will not be required. As for the use of slash as a separator, Windows does not allow the use
of that character in file names, so the on-the-fly conversion of “/” to “\” on Windows systems
results in no conflict.

This approach is quite common76 and many Windows programs accept forward slashes as
path markers in order to improve interoperability with other systems and the Internet.

73 This is UNIX, Linux, Cygwin, the Internet, and many, many others.
74 Well Windows really as MS-DOS is extinct save a few embedded systems.
75 For more please see: http://superuser.com/questions/176388/why-does-windows-use-backslashes-for-

paths-and-unix-forward-slashes
76 The Ruby language also uses this approach.

Page 63 of 354

http://superuser.com/questions/176388/why-does-windows-use-backslashes-for-paths-and-unix-forward-slashes
http://superuser.com/questions/176388/why-does-windows-use-backslashes-for-paths-and-unix-forward-slashes

Page 64 of 354

Formatting and Parsing

A very large part of computer programming involves the twin, related, processes to turning
internal data into readable strings and turning readable strings into internal data. These
processes generally go by the names formatting and parsing.

Currently these activities are supported for general data (like numbers, strings, etc, or an
array of numbers, strings, etc), Duration objects and Time objects.

Now, the Duration class only supports formatting and other classes are sure to be added,
so this is still a work in progress,

Only a few methods accomplish these tasks for all of those data types: format (with short-
form f"), parse (with short-form p") and parse! (with short-form p!"). These are described
below:

Methods High Level Description

format / f" Turn an object (or sometimes an array of objects) into a string.

parse / p"
Turn a string into an object. If this cannot be done, return nil or
an empty result.

parse! / p!"
Turn a string into an object. If this cannot be done, generate an
error.

An overview of the available methods is given in the following two tables:

Data Class Formatting

General Data

[an_object format_string] format [string]

[an_object] f"format_string" [string]

[an_array format_string] format [string]

[an_array] f"format_string" [string]

Duration
[a_duration format_string] format [string]

[a_duration] f"format_string" [string]

Time
[a_time format_string] format [string]

[a_time] f"format_string" [string]

Page 65 of 354

Data Class Parsing

General
[string parse_string] parse [an_array, partial_array, or empty_array]

[string] p"parse_string" [an_array, partial_array, or empty_array]

Duration Not currently supported.

Time

[string Time parse_string] parse [a_time or nil]

[string Time parse_string] parse! [a_time or error]

[string Time] p"parse_string" [a_time or nil]

[string Time] p!"parse_string" [a_time or error]

For more information on the specifics of any of these methods, see the Reference sections
for the Duration, String, and Time classes.

JSON Formatting and Parsing

WIP

Page 66 of 354

Handling Exceptions

Error handling is an essential, if unpopular, part of all programming tasks. This section
focuses on the use of the exceptions mechanism to simplify and streamline error handling.

When exceptions are not employed, code must be written that detects an error and returns
an “error code”. Further code must then be written to detect these error codes and either
process them, or propagate them up the call chain until they can be handled at the
appropriate level. In this approach, it is not uncommon for error handling code to be so
voluminous that it obscures the “main” flow of the code.

Exceptions are an error handling mechanism designed to separate out error handling from
error detection and to simplify code structures. When errors are detected, they can be
“thrown”. No error codes need be returned. Exceptions are simply “caught” and processed
at the appropriate level. The exception system handles the propagation of errors without
the need to write additional code.

The Nature of Exceptions in fOOrth

Exceptions is one area where fOOrth is very different than Ruby77. In Ruby, exceptions are
objects that are part of an elaborate hierarchy of exception classes, one class for each type
of exception. In fact, there are so many exception classes that the majority of classes in the
Ruby environment are exception classes. In fOOrth exceptions are simply messages sent
from the error detector to the error processor. These messages take the form of a string
with a leading part that is structured and a trailing part that is free form and hopefully
descriptive.

Consider a typical exception message in fOOrth:

E15: divided by 0

The two components of this message are clearly visible. The structured section consists of
“E15:” and identifies the exception. The unstructured section “divided by 0” describes the
nature of the exception. The use of these sections is examined further under the topic
“Determining the Type of Error”, below.

Handling Errors

Consider the following three methods78 that display 50/(n-5) for values of n from 0 to 9:

(Exceptions in action)
(Phase One - Living Dangerously)
: danger
 0 10 do
 50 i 5 - / . space
 loop ;

77 Even so, fOOrth exceptions are implemented using the Ruby exception mechanisms.
78 These examples are in the file exception.foorth in the docs/snippets folder.

Page 67 of 354

(Phase Two - Living Tediously)
: tedium
 0 10 do
 50 i 5 -
 dup 0<> if
 / . space
 else
 drop drop ."oops "
 then
 loop ;

(Phase Three - Living Exceptionally)
: safety
 0 10 do
 try
 50 i 5 - / . space
 catch
 ."oops "
 end
 loop ;

The first method called “danger” ignores errors totally79. It just runs without a care because,
surely, what could possibly go wrong? The second method called “tedium”, adds some
extra code to detect a possible error condition (like division by zero) and print out a helpful
message, “oops”. The last method called “safety” contains the potentially dangerous code
in a “try” clause. If any error should be detected, the “catch” clause is executed which also
prints out the vitally important “oops” message.

Let's see what happens when we try out these three methods...

>danger
-10 -13 -17 -25 -50
E15: divided by 0
>tedium
-10 -13 -17 -25 -50 oops 50 25 16 12
>safety
-10 -13 -17 -25 -50 oops 50 25 16 12
>

The living dangerously (danger) code bombs out with an error. Not good. The results from
the tedious (tedium) and exceptional (safety) code are the same. The difference is that the
exceptional code is clearer and more concise and the tedious code is well... tedious.

The basic try block

The bare basics of an exception handled code block is:

try (dangerous code here) catch (error recovery code here) end

79 Well it's more complex than that. It is more accurate to say that when exceptions occur and no handler is
found, the default exception handler is executed which takes safe, default actions that may or may not
desirable to the correct operation of the program that had the error.

Page 68 of 354

Note that the dangerous code may include nested method calls, control structures, etc.
Furthermore these entities must be complete. You cannot have part of a loop or conditional
statement. That would generate an error at compile time.

Determining the kind of error

In fOOrth, the catch clause catches all errors80. Often, different corrective action is required
depending on the type of error. To determine the type of error, fOOrth uses the error code
prefix. This prefix is a string consists of a leading upper-case letter, followed by a two digit
code, optional followed by a comma and a sub-code, finally ending with a colon (“:”).

The defined error codes are specified below in the sections: fOOrth Native Exception
Codes, Application Error Codes, and Ruby Mapped Exception Codes.

To facilitate the checking of error codes in the catch clause, the local method ?" is used.
This method has an embedded string that is matched against the current error to see if
there is a match. Consider the case of the divide by zero error from the previous examples.
The following statements will all test for this error:

(stuff omitted) catch ?"E" if (action) then
(stuff omitted) catch ?"E1" if (action) then
(stuff omitted) catch ?"E15" if (action) then
(stuff omitted) catch ?"E15:" if (action) then

Whereas the following would NOT process that error:

(stuff omitted) catch ?"F" if (action) then
(stuff omitted) catch ?"E2" if (action) then
(stuff omitted) catch ?"E**" if (action) then
(stuff omitted) catch ?"E15,12" if (action) then

So far, the examples have focused on handling a single type of exception using an if
statement. A more general approach utilizes the switch statement(see Control Structures,
the switch statement above for more details). An example follows:

try
 (dangerous code)
catch
 switch
 ?"F30:" if (action 1) break then
 ?"E15:" if (action 2) break then
 bounce (See Passing the buck, below)
 end
end

Passing the buck

Given that many types of exceptions exist, it will naturally occur that an exception handler

80 This is not actually true. There are some errors like “fatal” that are not caught because they are in effect
not recoverable and catching these errors and trying to recover would lead to even worse problems. Other
missed exceptions are simply gaps in the implementation and will eventually be handled correctly in a later
version of the fOOrth language system.

Page 69 of 354

will probably not handle all possible conditions. To deal with this situation, the “bounce” verb
allows an exception handler to relaunch or bounce the exception to the exception handler
at the next higher level in the call chain. The last example in the previous section shows
this in action.

The handler processes exceptions of type F30 and E15 itself. All other types of exceptions
are bounced up the call chain.

Tying Up Loose Ends

An important aspect of programming is the management of resources. A large part of that
task involves freeing up, closing, deleting, or otherwise retiring objects used in by the
program. While useful, exceptions can bypass this clean-up work. Avoiding this problem is
the reason for the “finally” keyword.

In a try block, the finally section represents code that is performed after the dangerous code
runs, regardless of the success of that code. The finally section always gets the last word.
Consider this fourth81 method in the exceptions82 file:

(Phase Four - Cleaning Up After Yourself)
: cleanup
 "temp.txt" OutStream .create val: out_file
 ."File opened" cr

 try
 ."Danger comes next." cr
 1 0 / out_file .
 ."Danger has passed." cr
 finally
 out_file .close
 ."File closed" cr
 end ;

This method opens a file, tries to write the result of a dangerous calculation to it, and then,
finally, closes the file. Along the way, the chatty code gives progress reports so that we can
follow its progress in this perilous task. So, let's see what happens when this code is run.

>)load"docs/snippets/exception.foorth"
Loading file: docs/snippets/exception.foorth
Completed in 0.02 seconds

>cleanup
File opened
Danger comes next.
File closed

E15: divided by 0

The file is opened, upcoming danger is announced but never passed, and then the file is
closed. We then see the default exception handler telling us what went wrong. The key here
is that the file was closed even though an error was encountered.

81 That's fourth and not FORTH.
82 This example is in the file exception.foorth in the docs/snippets folder.

Page 70 of 354

Summary

The try block brings all the elements discussed in the previous sections as laid out below.
Note that the order of sections is important. A catch section cannot follow a finally section.

try
 (dangerous code)
(optional) catch
 (exception handler with optional ?"Err Code" and bounce)
(optional) finally
 (cleanup code goes here)
end

The last example in our file83, shows all of these sections working together:

(Phase Five - All Together Now)
: last_example
 "temp.txt" OutStream .create val: out_file
 ."File opened" cr

 try
 ."Danger comes next." cr
 1 0 / out_file .
 ."Danger has passed." cr
 catch
 ."Error detected." cr
 finally
 out_file .close
 ."File closed" cr
 end ;

And here is the output for this code:

>last_example
File opened
Danger comes next.
Error detected.
File closed

>

Note how the error is caught (displaying “Error detected”) and then cleanup actions are
performed (displaying “File closed”). Unlike the fourth84 method, there is no uncaught
exception and the default exception handler is not utilized. Instead the example exits
“gracefully”.

83 This example is in the file exception.foorth in the docs/snippets folder.
84 Still not the FORTH method.

Page 71 of 354

Generating Errors

So far our code has been responding to errors and handling them as needed. The question
arises: What if we need to take on the role of whistle-blower85 when we detect an error? In
fOOrth, exceptions are messages sent from the detector to the handler. So, just as strings
are caught to handle exceptions, they are thrown to generate them.

Consider the following security testing code86:

(Is the password secure?)
: test_password (password --)
 "1234" = if
 throw"U10: Change the combination on my luggage!"
 then ;

When run we get:

>)load"docs/snippets/throw.foorth"
Loading file: docs/snippets/throw.foorth
Completed in 0.01 seconds

>"1234" test_password

U10: Change the combination on my luggage!

>"secret" test_password

>

This code performs a check of the parameter password against the presidential standard of
“1234” and throws an exception if there is a match, otherwise the code does nothing.

Summary

It really is that simple. There are two “flavors” of the throw method:

"X99: Error Msg" .throw
throw"X99: Error Msg"

The first form is needed when the message string needs to be constructed or contains
variable information. The second form is simpler and more succinct. However, both do the
same basic thing; they send an exception string to the nearest active catch clause, or the
default handler if there are no active catch clauses.

85 Fortunately, this role is not nearly so perilous in fOOrth as it is when taking on the military-industrial
oilagarchy.

86 This example is in the file throw.foorth in the docs/snippets folder.

Page 72 of 354

fOOrth Native Exception Codes:

Exception codes generated within fOOrth all take the form “F99:” (an “F”, 2 digits, and a
colon) followed by a descriptive message.

Code Description

F0 Internal fOOrth system messages.

F00 A “)quit” command has been executed.

F1 Compile Time Errors.

F10 Syntax Error, unable to process input token.

F11 Syntax Error, missing specification for input token.

F12 Control Structure Nesting Error. A control structure was malformed.

F13 The compiler operation is not supported by the target object.

F2 Message Passing Errors.

F20 Message Not Understood by the Receiver.

F21 Control Structure is Not Supported by the Receiver.

F3 Data Underflow Errors.

F30 Virtual Machine Data Stack Underflow

F31 Stack/Queue/Deque Underflow

F4 General argument errors.

F40 Data Conversion Error; Unable to convert object to the required type.

F41 The argument value is not in the acceptable range.

F42 The argument is not of an acceptable class.

F5 I/O Errors.

F50 Error Opening a File for Reading.

F51 Error Opening a File for Writing.

F6 Network Errors. (WIP)

F7 Task/Thread/Fiber Errors.

F70 A bundle may only contain procedures, fibers, or bundles.

F71 May only yield in a fiber.

F72 The fiber is dead, no further steps can be taken.

F8 Reserved.

F9 Internal Errors.87

Page 73 of 354

Code Description

F90 Internal Data Structure Error.

F91 Too many Virtual Machines for a thread.

Application Error Codes:

In general, convention indicates that application specific error codes begin with an upper
case letter88 and a two digit code. Further any optional sub-code is placed after a comma
(“,”). Some possible interpretations of leading letters are shown below:

Code Description

Ann Generic Application Errors.

Cnn Communication Errors.

Dnn Database Errors.

Inn Internal Errors.

Nnn Network Errors.

Unn User/Authentication Errors.

Xnn Unknown or Unspecified Errors.

Ruby Mapped Exception Codes:

Exceptions generated by Ruby are mapped to fOOrth exceptions. There are a lot of Ruby
exceptions, so it is a rather lengthy map.

Code Description

E01 Argument Error.

E01,01 Gem::Requirement::Bad Requirement Error.

E02 Encoding Error.

E02,01 Encoding::Compatibility Error.

E02,02 Encoding::Converter Not Found Error.

E02,03 Encoding::Invalid Byte Sequence Error.

E02,04 Encoding::Undefined Conversion Error.

87 Generally these are not so much errors in the application as indications of a bug in the compiler.
88 It is strongly recommended that prefix codes starting in “E” and “F” be avoided.

Page 74 of 354

Code Description

E03 Fiber Error.

E04 I/O Error.

E04,01 EOF Error.

E05 Index Error.

E05,01 Key Error.

E05,02 Stop Iteration Error.

E06 Local Jump Error.

E07 Math::Domain Error.

E08 Name Error.

E08,01 No Method Error.

E09 Range Error.

E09,01 Float Domain Error.

E10 Regular Expression Error.

E11 Runtime Error.

E11,01 Gem::Exception.

E11,01,01 Gem::Command Line Error.

E11,01,02 Gem::Dependency Error.

E11,01,03 Gem::Dependency Removal Exception.

E11,01,04 Gem::Dependency Resolution Error.

E11,01,05 Gem::Document Error.

E11,01,06 Gem::End Of YAML Exception.

E11,01,07 Gem::File Permission Error.

E11,01,08 Gem::Format Exception.

E11,01,09 Gem::Gem Not Found Exception.

E11,01,09,01 Gem::Specific Gem Not Found Exception.

E11,01,10 Gem::Gem Not In Home Exception.

E11,01,11 Gem::Impossible Dependencies Error.

E11,01,12 Gem::Install Error.

E11,01,13 Gem::Invalid Specification Exception.

E11,01,14 Gem::Operation Not Supported Error.

E11,01,15 Gem::Remote Error

Page 75 of 354

Code Description

E11,01,16 Gem::Remote Installation Canceled

E11,01,17 Gem::Remote Installation Skipped

E11,01,18 Gem::Remote Source Exception

E11,01,19 Gem::Ruby Version Mismatch89

E11,01,20 Gem::Irreconcilable Dependency Error

E11,01,21 Gem::Verification Error

E12 System Call Error90

E12,E2BIG Argument list too long.

E12,EACCES Permission denied.

E12,EADDRINUSE Address already in use.

E12,EADDRNOTAVAIL Cannot assign requested address.

E12,EAFNOSUPPORT Address family not supported by protocol.

E12,EAGAIN Try again.

E12,EAGAINWaitReadable Try again?

E12,EAGAINWaitWritable Try again?

E12,EALREADY Operation already in progress.

E12,EBADF Bad file number.

E12,EBUSY Device or resource busy.

E12,ECHILD No child processes.

E12,ECONNABORTED Software caused connection abort.

E12,ECONNREFUSED Connection refused.

E12,ECONNRESET Connection reset by peer.

E12,EDEADLK Resource deadlock would occur.

E12,EDESTADDRREQ Destination address required.

E12,EDOM Math argument out of domain of function.

E12,EDQUOT Quota exceeded.

E12,EEXIST File exists.

E12,EFAULT Bad address.

E12,EFBIG File too large.

E12,EHOSTDOWN Host is down.

E12,EHOSTUNREACH No route to host.

89 This exception is only supported in Ruby 2.1.x and later.
90 System Call errors are wrappers around operating system error codes. As these vary by operating system,

the list that follows is typical, but by no means exhaustive or required. Refer to operating system error code
documentation for more information on these errors. The descriptions here are from Linux documentation.

Page 76 of 354

Code Description

E12,EILSEQ Illegal byte sequence.

E12,EINPROGRESS Operation now in progress.

E12,EINPROGRESSWaitReadable Operation now in progress?

E12,EINPROGRESSWaitWritable Operation now in progress?

E12,EINTR Interrupted system call.

E12,EINVAL Invalid argument.

E12,EIO I/O error.

E12,EISCONN Transport endpoint is already connected.

E12,EISDIR Is a directory.

E12,ELOOP Too many symbolic links encountered.

E12,EMFILE Too many open files.

E12,EMLINK Too many links.

E12,EMSGSIZE Message too long.

E12,ENAMETOOLONG File name too long.

E12,ENETDOWN Network is down.

E12,ENETRESET Network dropped connection because of reset.

E12,ENETUNREACH Network is unreachable.

E12,ENFILE File table overflow.

E12,ENOBUFS No buffer space available.

E12,ENODEV No such device.

E12,ENOENT No such file or directory.

E12,ENOEXEC Exec format error.

E12,ENOLCK No record locks available.

E12,ENOMEM Out of memory.

E12,ENOPROTOOPT Protocol not available.

E12,ENOSPC No space left on device.

E12,ENOSYS Function not implemented.

E12,ENOTCONN Transport endpoint is not connected.

E12,ENOTDIR Not a directory

E12,ENOTEMPTY Directory not empty.

E12,ENOTSOCK Socket operation on non-socket.

E12,ENOTTY Not a typewriter... what's a typewriter?

E12,ENXIO No such device or address.

E12,EOPNOTSUPP Operation not supported on transport endpoint.

E12,EPERM Operation not permitted.

Page 77 of 354

Code Description

E12,EPFNOSUPPORT Protocol family not supported.

E12,EPIPE Broken pipe.

E12,EPROCLIM The per-user process limit has been reached.

E12,EPROTONOSUPPORT Protocol not supported.

E12,EPROTOTYPE Protocol wrong type for socket.

E12,ERANGE Math result not representable.

E12,EREMOTE Object is remote.

E12,EROFS Read-only file system.

E12,ESHUTDOWN Cannot send after transport endpoint shutdown.

E12,ESOCKTNOSUPPORT Socket type not supported.

E12,ESPIPE Illegal seek.

E12,ESRCH No such process.

E12,ESTALE Stale NFS file handle.

E12,ETIMEDOUT Connection timed out.

E12,ETOOMANYREFS Too many references: cannot splice.

E12,EUSERS Too many users.

E12,EWOULDBLOCK Operation would block.

E12,EWOULDBLOCKWaitReadable Operation would block?

E12,EWOULDBLOCKWaitWritable Operation would block?

E12,EXDEV Cross-device link.

E12,NOERROR These aren't the droids we're looking for. Move along, move along.

E13 Thread Error.

E14 Type Error.

E15 Zero Division Error.

E30 Signal Exception Detected.

E30,01 Interrupt Detected (Typically Control-C).

E30,02 End-of-input detected.

Page 78 of 354

Multiple Nexus Programming

In a traditional, simple program, there exists a single nexus, or point of execution. The
program performs actions in a sequence, with repetitions, decisions as needed, but always
one step after another. More complex programs utilize multiple points of execution,
seeming to do more than one thing at a time. With current computer systems, there are
three types of multi-nexus programming based on the granularity of the working divisions:

1. Multi-process91: The operating system is utilized to create a whole new process to
carry out additional actions.

2. Multi-thread92: The operating system is utilized to create a thread within the same
process. This new thread then is used to carry out additional actions.

3. Multi-fiber93: Within a single execution nexus, multiple functions, cooperate. In effect
sharing processor resources by yielding to one another as needed.

A brief comparison of these types of multi-programming is given in the following table:

? Multi-process Multi-threads Multi-fiber

Resource usage? Greatest Moderate Least

Memory partition? Fully partitioned Mostly Shared Mostly Shared

Timing of work? OS Supervised OS Supervised
Programmer
responsibility

Protection from
errors?

Extensive
Programmer
responsibility

Programmer
responsibility

Security concerns? Very High94 Lower Lower

Communication with
workers?

Capture STDOUT,
Networking API, and
“Middleware95”.

Queues and
Mutex Semaphores

Shared Variables and
Array Queues96

fOOrth support? Partial97 Yes Yes

91 Sometimes called Multiple Processes. Please see: https://en.wikipedia.org/wiki/Process_(computing)
92 Please see: https://en.wikipedia.org/wiki/Thread_(computing)
93 Please see: https://en.wikipedia.org/wiki/Fiber_(computer_science)
94 When execution leaves the protected fOOrth cocoon and enters the system at large, the chances for

mischief are greatly increased.
95 Please see: https://en.wikipedia.org/wiki/Middleware, https://en.wikipedia.org/wiki/%C3%98MQ (ØMQ),

and https://en.wikipedia.org/wiki/RabbitMQ
96 See the Section: Data Collections in fOOrth/Moving Data/The Queue above for more details.
97 While fOOrth does indeed allow for the creation of “external” processes, it currently lacks any means of

communication with those processes. This support may be added at a later date.

Page 79 of 354

https://en.wikipedia.org/wiki/RabbitMQ
https://en.wikipedia.org/wiki/%C3%98MQ
https://en.wikipedia.org/wiki/Middleware
https://en.wikipedia.org/wiki/Fiber_(computer_science)
https://en.wikipedia.org/wiki/Thread_(computing)
https://en.wikipedia.org/wiki/Process_(computing)

There is a hierarchical relationship among the three:

• A process may contain one or more threads.

• A thread may contain one of more fibers.Multi-process programming

As of version 0.5.0, fOOrth has only rudimentary support multiple process programming98.
The following methods are currently available:

Command/Method Concurrent? Output? Input
)" No Goes to STDOUT From STDIN
.shell No Goes to STDOUT From STDIN
.shell_out No Captured to a string From STDIN

The “.shell” and .shell_out methods of the String class, passes the target string to the
current system command line interpreter for execution. The program runs, without
interaction with the calling fOOrth code. Only when that command is completed does the
.shell method return so that processing may continue. The .shell_out gathers the output of
the process into a string while .shell sends this output to the default location (usually
STDOUT unless redirected).

The method “)"” (of the VirtualMachine class) is the command equivalent with an embedded
string for the command text. Some examples follow:

>"ls" .shell
Gemfile demo.rb integration rakefile.rb t.txt
Gemfile.lock docs lib rdoc temp.txt
README.md fOOrth.gemspec license.txt reek.txt test.foorth
bin fOOrth.reek pkg sire.rb tests

>)"ls
Gemfile demo.rb integration rakefile.rb t.txt
Gemfile.lock docs lib rdoc temp.txt
README.md fOOrth.gemspec license.txt reek.txt test.foorth
bin fOOrth.reek pkg sire.rb tests

>"ls" .shell_out .
Gemfile
Gemfile.lock
<Some entries deleted for brevity>
temp.txt
test.foorth
tests

98 As fOOrth develops and matures, this deficiency will surely be corrected.

Page 80 of 354

Multi-thread programming

Multi-threaded is a programming technique that allows the programmer to improve the
applications use of the available resources, and to manage time better. Without this
technique, when a program has to deal with multiple responsibilities, the programmer has
to be a sort of juggler, looking at each work item in a sequence. This is difficult because it
requires being careful not to neglect anything for too99 long, or like a poor juggler, this
results in dropping the ball.

Multi-threaded is a programming was introduced to automate the juggling act by rapidly
switching the processor from one activity to another. In recent years however, a lot has
changed in how this is accomplished.

In days gone by100, it was typical for most computers to have only one execution unit
available101. In all but the smallest systems today, it is common for there to be two or more
execution units at the programmer's disposal. As a result, whereas an old computer would
have divided a single execution unit between multiple responsibilities, a modern one can
bring multiple execution units to bear on problems.

Yet, in spite of this, multi-threading can yield significant enhancement to performance even
when there is only one execution unit. This is due to the fact that:

1. The application does not need to do “busy-work” polling potential input sources.

2. The application is able to respond to external inputs in a more timely manner by
creating a high priority thread that waits for the input data.

3. The application is not “blocked” waiting for a slow peripheral device (like a mass
storage device102 or even worse, a database) to complete an operation before it can
proceed. This allows the processor to do useful work when it would otherwise be
idle.

4. The application can handle long running work in the “background” by creating a low
priority thread to do that work. This allows the idle time to be used without
competing for resources when more time sensitive activities are being performed.

Naturally, multiple execution units provide even greater improvements from multi-threaded
programs by bringing multiple processors to bear on the various threads of work.

All of this means that applications can delivery significantly greater performance using
these techniques than without.

In order to utilize multiple threads, a few essentials are required:

1. The ability to create new threads of execution and have these do work.

2. The ability to send data and receive results.

3. The ability to access shared resources in a coherent manner.

99 How long is too long? This depends very much on the needs of the task. If slow computer response results
in application failure, this is typically known as a “hard” real time requirement. If it only results in poorer
performance or user annoyance, it is often called a “soft” real time requirement.

100 Officially known as “The Bad Old Days”.
101 Often called a core, especially now that most processors have more than one of them.
102 Newer solid state mass storage devices are much faster than the older mechanical (spinning disk)

versions, but they are still much slower than the processor.

Page 81 of 354

Creating threads:

When a thread is created in fOOrth, it receives a number of resources. These are:

• A thread of execution. This usually translates to an operating system thread.

• A virtual machine object with an optional name. If no name is specified, the default
name of “-” is used. The virtual machine comes with a separate data stack for the
thread.

• It's own set of thread scope variables.

• A copy of the data stack of the parent thread. This allows parameters to be sent to
the newly created thread.

In fOOrth, there are a number of ways to create threads. The following examples show
some ways this can be done:

"MyThread" Thread .new{{ (work done here) }}
"MyThread" {{ (work done here) }} .start_named
{{ (work done here) } .start

The first two examples create threads with named virtual machines. The third example
creates a thread with the default name of “-”. Of course the thread code need not reside
entirely inside the thread block. In fact proper object oriented design would lead one to
place most of the code in a worker object. This might look something like this:

"MyThread" Thread .new{{ WorkerClass .new .do_work }}

Communicating with threads:

There are a number of strategies available for communicating with threads. One of the
most popular is to uses a queue. This mechanism allows one thread to send another thread
objects without worrying about concurrency issues. Let use see how a worker thread that
reads commands from a queue could be set up:

Queue .new
"Worker" Thread .new{{
 val#: #command_q
 false var#: #exit

 begin
 #command_q .pend .call
 #exit @ until
}}
val#: #worker_q

Note that the queue created in the first line is both passed into the thread and available
after the thread has been created, allowing the #worker_q value to be set up.

Then later in the code, the client thread could send commands to the worker thread with

Page 82 of 354

code along the lines of the following:

{{ ."Lift that bail" }} #worker_q .post
{{ ."Tote that barge" }} #worker_q .post
{{ true #exit ! }} #worker_q .post

Coordinating resources:

Another issue that arises in multi-threaded programming is that of data coherency. Let us
imagine that the following snippet of code, for reserving a seat on a plane, is run in multiple
threads.

// [seat_id vehicle] .reserve_seat [pass/fail]
Vehicle .: .reserve_seat
 val: seat_id
 seat_id @seats .[]@ if
 false seat_id @seats .[]!
 true
 else
 false
 then ;

This code checks to see if a seat is available and if it is, makes it unavailable and returns
true. If the seat is already taken it returns false. This code will not work in a multi-threaded
environment. The problem is that the seat could be snatched away between being tested
and reserved. This can be resolved with a Mutex semaphore. So, first of all, the Vehicle
class must define a semaphore named, for example, @trx.

Vehicle .: .init
 // Much code omitted...
 Mutex .new val@: @trx
;

Then this is one way this defective code could be corrected.

// [seat_id vehicle] .reserve_seat [pass/fail]
Vehicle .: .reserve_seat
 val: seat_id
 @trx .do{{
 seat_id @seats .[]@ if
 false seat_id @seats .[]!
 true
 else
 false
 then
 }} ;

In this code, the reading of the seat status and the updating of it are protected. This make
the read/update process atomic103, avoiding concurrency issues.

103 Please see: https://en.wikipedia.org/wiki/Atomicity_(database_systems)

Page 83 of 354

https://en.wikipedia.org/wiki/Atomicity_(database_systems)

Multi-fiber programming

A fiber is a light-weight cooperative routine or coroutine. This cooperative approach is the
one closest to that traditionally used by FORTH to achieve concurrency. In general, this
cooperation takes the form of a group of fibers that take turns processing. This group of
fibers is called a bundle. In fOOrth bundles are implemented via the Bundle and
SyncBundle classes.

Fiber Step

The basic unit of execution of a fiber is the step. The .step method instructs the fiber to
process until it reaches its next progress point. In most regards, this is identical to calling a
regular method, except for how .step interacts with yield. If the .step method is sent to a
dead fiber, an error occurs.

Fiber Yield

In order to cooperate, fibers must explicitly pass the processing nexus off to the next fiber
or back to the calling thread. This is accomplished with the yield method. When the yield
method is executed, the nexus returns to the calling thread. The next time the fiber receives
a step command, it resumes, not at the start of the fiber, but the method following the yield
method.

Bundle Step

The .step method of a fiber performs the next unit of work in that fiber. The .step method
in a bundle sends the method the .step method to the next fiber (or bundle) in the bundle.
If there are no fibers or bundles to continue the work, the .step method simply does
nothing and returns.

Bundle Run

The .run method continuously steps the bundle while there are still active fibers (or
bundles) within it. When there is no more work to be done, the .run method exits.

Creating fibers and bundles:

When a fiber is created in fOOrth, it receives a only one resource: its own data stack. In
particular, the following are shared with the fiber creator:

• The thread of execution.

• The virtual machine.

• All thread scope variables.

In fOOrth, there are two of ways to create fibers. The following examples show how this can
be done:

Fiber .new{{ (work done here) }} // Create a fiber with the constructor.
{{ (work done here) }} .to_fiber // Convert a procedure to a fiber.

Page 84 of 354

In contrast, bundles are always created from fibers, procedures, other bundles, and arrays
of fibers, bundles and procedures. It is also possible to create an empty bundle with nothing
in it. These are shown below:

Bundle .new // Empty bundle.
Fiber .new{{ (work done here) }} .to_bundle // From a fiber.
{{ (work done here) }} .to_bundle // From a procedure.
[{{ (work) }} {{ (work) }}] .to_bundle // From an array.

Another feature of bundles is that they are dynamic. As execution progresses, when fibers
are completed, they are removed from the bundle. On the flip side, the .add method allows
fibers, procedures, and bundles to be added to a bundle as needed.

Communicating with fibers:

Since fibers cooperate, communication between fibers is greatly simplified. There is no
need to use mutexes or other mechanisms to coordinate access because fibers yield the
processor in a deterministic manner. This allows simple shared variables to suffice for most
cases.

However, when communicating with another thread, all the complexity comes back, plus
one more. Fibers should never block. If a fiber blocks, then cooperative processing ceases.
Furthermore, since fibers run in the same thread, it can cause a lock-out where no fibers
can ever make progress. Instead, fibers need to poll and yield if there is no work to do. An
example of this is presented in the section Bundles, .run, and threads below.

Bundles, .run, and threads

A common pattern is to place a bundle of fibers into its own thread. This allows it to run
continuously performing work. The following shows the example of a worker thread with a
bundle of fibers fed by a queue. This is the thread-bundle hybrid of the thread example
presented in the section Communicating with threads above.

Queue .new
"Worker" Thread .new{{
 val#: #command_q
 false var#: #exit
 Bundle .new val: bundle // Create an empty bundle.

 {{ begin
 yield // Let other fibers run.
 #command_q .empty? not if // Poll for a command.
 #command_q .pend! bundle .add // Add a task fiber.
 then
 #exit @ until }} bundle .add // Add the command poll fiber.
 bundle .run // Run the bundle.
}}
val#: #worker_q

The code to send commands to the worker thread is the same, except now these
commands must cooperate using yield. This is more complex. How else do these two

Page 85 of 354

approaches differ? In a word: concurrency. With the thread only approach processes each
command one at a time. By contrast, the thread + bundle approach can process multiple
commands concurrently.

Generators

A specialized, but common use of fibers is that they can serve as generators. A generator is
an object that emits or generates a stream of data, one step at a time. In fibers, generators
are enabled with the .yield method. The .yield method is similar to the yield method
except that it also transfers an object from the fiber's data stack to the caller's data stack.
This allows data to be “returned” to the caller. Consider the following Fibonacci sequence
generator:

Fiber .new{{ 1 1 begin dup .yield over + swap again }} val$: $fib
0 10 do $fib .step . space loop

This code will output: 1 1 2 3 5 8 13 21 34 55. In fact, each time that the $fib fiber value
executes the .step method, it will output the next number in the sequence.

Ruby and Multi-threading

Few areas in programming are as difficult to get right as multi-threaded programming 104. In
particular, Ruby105 has a complicated relationship with this problem. The Ruby language
was designed to bring joy to programmers. Complexity and frustration, for which multi-
threaded programming is famous, are not particularly joyful attributes.

A major issue in this regard is that it is difficult to manage data when it is possible to modify
that data from multiple execution “threads” in an uncoordinated manner. For example, if
data were being added to an array, and while that operation was still incomplete, another
thread attempted to update the same array, the results could be a corrupted data structure.
This hazard applies equally to programmer written code and internal language library code.

The solution applied by classic MRI Ruby is to block all threads but one from running when
there is any chance of inconsistent results. Typically this means that threads run
sequentially until done and the only real concurrency available is while waiting for an I/O
operation to complete. This is accomplished with the Global Interpreter Lock (GIL106 107).

It is noteworthy that other implementations of Ruby (Rubinius and JRuby for example) have
taken the path of making their internal libraries thread “safe” and expecting programmers to
do the same with their own code. Thus these versions of Ruby are free of the GIL and
programmers are given fuller access to the power (and hazards) of threads.

104 It seems that the Barbie™ doll got it wrong; Math is easy, multi-threaded programming is hard!
105 Please see: https://www.youtube.com and search for “Aloha Ruby Conf 2012 - Keynote - Rails 4 and the

Future of Web by Aaron Patterson”. To save time and skip over some spam (literally) go to 8:10 in the
video. Also see from YouTube please search for “Full Stack Fest 2015: Ruby 3.0, by Yukihiro Matsumoto”
and skip to 34:10 or see the whole video as Mr Matsumoto is most worth listening to.

106 Some versions of Ruby change the name of the GIL, but they do not change what it does!
107 For an excellent look at how the GIL really works in Ruby, please see
http://www.jstorimer.com/blogs/workingwithcode/8085491-nobody-understands-the-gil and
http://www.jstorimer.com/blogs/workingwithcode/8100871-nobody-understands-the-gil-part-2-implementation

Page 86 of 354

http://www.jstorimer.com/blogs/workingwithcode/8100871-nobody-understands-the-gil-part-2-implementation
http://www.jstorimer.com/blogs/workingwithcode/8085491-nobody-understands-the-gil
https://www.youtube.com/

A Brief Overview of Key OO Concepts

A detailed study of object oriented programming principles is far beyond the scope of this
User's Guide. What follows is a very brief overview of these concepts as they apply to
fOOrth.

In the world of object oriented programming, there are many diverse domains of thought. In
the fOOrth language system, two of those domains have their expression:

• Class based object oriented design.

• Prototype based object oriented design.

Class Based OO

Going all the way back to Smalltalk in 1980, the most common sort of object oriented
systems are those that are class based. Classes act as a sort of shared hierarchical label
or category for objects (commonly referred to as instances) of that class. Classes provide
two main services to the programming environment:

1. They are containers for units of code called methods. These methods are available
to all instances of the class as well as any classes based on the class. Reflecting the
communal nature of these methods, they are called shared methods in fOOrth.
Method definitions in a class override those of classes higher up in the hierarchy.

2. Classes also act as factories or templates for creating instances of their class. This is
often done with the .new method applied to the class in question but there are other
methods as well. Refer to documentation for the class in question in the reference
below.

All object oriented behavior flows from these two simple behavioral properties.

In some languages (like C++) classes are not objects. They exist primarily as constructs
used by the compiler to generate code. This is not the case with fOOrth where classes are
themselves full fledged objects. Given that they are objects, this means that they too are
instances of a class. In the case of classes, it turns out that they are instances of the Class
class. Now the Class class is also an object and an instance of a class but what class?
Perhaps some SuperClassyClass? Nope; The Class class is unique in that it is an instance
of itself. This unusual condition is shared by all Smalltalk like languages.

Class based object oriented programming is utilized by a vast number of modern
programming languages, far too numerous to mention.

Class Based Inheritance

Classes are related to one another through inheritance. A single class, called Object, is the
root of the entire tree of classes. This nested hierarchy of classes in the fOOrth system is
illustrated below:

Page 87 of 354

Object
Array
Class
Duration
False
Hash
InStream
Mutex
Nil
Numeric

Complex
Float
Integer

Bignum108

Fixnum
Rational

OutStream
Procedure
Queue
String

StringBuffer
Thread
Time
True
VirtualMachine

Classes (other than Object) inherit behaviors from their ancestor or parent classes. Thus
the capabilities of objects is able to “layer” over the capabilities of their parent classes. This
property can be used for a number of different effects:

Code Reuse: Code in the parent class is effectively shared by all classes the are derived
from the base class. By default the subclass retains all of the operations of the base class.
Thus code common to several classes can be “factored-out” to a common base class.

Specialization: Sub-classes can be created that are more specialized variants of the base
class. For example: If a class called Animal existed, a subclass of Animal called Mammal
would have the characteristics of an animal plus the special characteristics of a mammal.

For a concrete example in the fOOrth hierarchy consider that the Integer class is a more
specialized version of the Numeric class.

Restriction: Sub-classes can be created to limit the behavior of the class. Consider a
Document class and its subclass ReadOnlyDocument. The ReadOnlyDocument would limit
and restrict actions that might modify the document but would otherwise inherit other
behavior from the Document base class.

108 In fOOrth, the BigNum and FixNum classes are artifacts of implementation and not actually part of the
language system.

Page 88 of 354

In fOOrth, the Complex class restricts actions in the Numeric base class that require the
value to be treated as a magnitude. Complex numbers are not magnitudes so these actions
(such as the > operator) are restricted.

Prototype Based OO

While class based inheritance is the classical approach to sharing behaviors, there is
another way this can be done: Prototype based object oriented design.

In this approach, there exists no special hierarchy of classes. Instead, all objects can take
on the crucial two tasks normally ascribed to classes.

1. They are containers for units of code called methods. These methods are bound to
individual objects. Reflecting the limited nature of these methods, they are called
exclusive methods in fOOrth. Method definitions in a object override older method
definitions for that object.

2. Objects can also act as factories or templates for creating instances of themselves.
This is often done with the .clone method applied to the class in question but there
may be other methods as well.

In practice, a prototypical object is created and its attributes are set up once. Then when
more instances of this object are needed, it is simply cloned. The clones can then function
as separate entities from the original. They can even have additional attributes added to
then and can then serve as prototypes themselves.

In this way, the goals of Code Reuse, Specialization, and Restriction discussed above may
be achieved in a prototype based system without the use of classes.

The primary language based on prototypes is ECMAScript109 (aka JavaScript).

Methods in fOOrth

All code in fOOrth is contained in methods. A method is a fragment of code that an object
uses to respond to a message that has been sent to that object. In fOOrth there are three
sorts of methods:

• Shared: Methods that are common to all instances of the class that contains them.

• Exclusive: Methods that are defined for one and only one object (and all of its clones
that are created after the exclusive method is defined.).

• Local: Methods that are created in a context and are accessible only in that context.
When the context concludes, these methods are no longer accessible.

109 Even though Ruby tolerates prototype based programming, it does not really embrace it.

Page 89 of 354

Late Binding and Polymorphism

Some programming languages like C++ and Java use classes and inheritance as the basis
for data typing, late binding and polymorphism. This is not the case in fOOrth110.

In fOOrth, the connection between a message and the object that is to receive that
message does not occurs until the message is actually sent at run time. That is what late-
binding is all about.

A side effect of this is that the receivers of messages need only be capable of responding to
the specific messages sent to them. They are not required to be part of a certain class sub-
tree, or have some connection to a known base class. Thus polymorphism is achieved
through message interface compatibility or “duck” typing.

Summary

Given that both class and prototype based object oriented design are present in fOOrth, it is
anticipated that well designed fOOrth programs will take a hybrid approach, using each
system where it is best suited to the task at hand.

For example, rather than starting with a generic object and adding all needed attributes to
that object, a more advanced class may be utilized and then extended to create a prototype
for new objects without creating another class.

110 Or in the underlying Ruby implementation, for that matter.

Page 90 of 354

Method Mapping

In fOOrth, method names are represented as simple strings. In the underlying Ruby
implementation, specialized “symbol” objects are used for this task. In running fOOrth on
top of an existing Ruby system, there were a number of issues that needed to be resolved.

1. The strings used by fOOrth needed to be converted to Ruby symbols to allow code
to be executed in Ruby.

2. The symbols used indirectly by fOOrth can not be allowed to conflict with the myriad
of symbols already in use by Ruby. Symbol collisions would cause the language
system to fail catastrophically as methods were redefined in an incoherent manner.

3. The mapping of symbols had to allow some strings to map to known symbols so that
Ruby code code be constructed that uses those symbols for internal actions.

In the reference implementation of fOOrth this mapping task is the responsibility of the
SymbolMap class. This class creates mappings in one of two ways:

1. Be default, a symbol is generated of the form :_dddd where dddd represents a
counting sequence of digits (not limited to four digits by the way). Since Ruby has no
methods or symbols defined in this way, the odds of a symbol space collision are
very low indeed.

2. The alternative is to explicitly specify the symbol used in the mapping. This special
case is used when Ruby code needs to send or otherwise use a fOOrth symbol. In
this case, the programmer is responsible for ensuring that no name space collisions
occur.

Exploring the mapping system

The user is able to explore the symbol table through two command commands provided for
that purpose, the)map” and)unmap” methods. These are demonstrated below:

>)map"+"
+ => _016

>)unmap"_016"
_016 <= +

In the above example, the addition (“+”) operator maps to the symbol _016. The next line
shows _016 mapping back to addition. The next example shows a method name with a
“custom” mapping:

>)map".init"
.init => foorth_init

>)unmap"foorth_init"
foorth_init <= .init

Page 91 of 354

Another command for exploring the symbol mapping space is the)entries command. This
command generates a listing of all symbols currently defined in the system at that point in
time. The command generates a paginated, formatted output.

>)entries
Symbol Map Entries =
! .[]! .getc .reverse 0>
!: .[]@ .gets .right 0>=
" .abs .hypot .right? 1+
… <voluminous output deleted>

An example of the output of the)entries command is found in the section Appendix A –
Symbol Glossary.

Page 92 of 354

Context

Whenever code is executed in anyway in fOOrth, whether interactively, loading a file, or
compiling a method, it does so in the presence of a context. In fOOrth, the context is a
nested description of the current system's conditions. When a new level of nesting is
encountered, an new layer of context is added.

The context concept is useful for keeping track of important information for the compiler.
Among this information is:

Tag Description

virtual machine The VM associated with this context.

mode The compiler mode: execute, deferred or compile
modes.

ctrl The control tag associated with this nest structure.

cls The class that is the target of this operation.

obj The object that is the target of this operation.

action
A pending action to be performed when a control
structure is completed.

local methods Any local (or context) methods defined.

Note that most elements of context are optional and do not always occur.

Exploring Context

At this time, the context system is not available at the fOOrth programming level, however,
a few methods are available for exploring the context system. The first is the command
)context. This command lists the current context information at the console. For example:

>)context

Context level 1
virtual machine => VirtualMachine instance <Main>
mode => execute

Now, context is largely used by the compiler, so another method)context! is more useful.
This method has the immediate attribute, meaning that it executes, even when the mode is
deferred or compiling. This allows us to take a peek at the context inside of the working
compiler. Consider these examples:

Page 93 of 354

>true if)context! else)context! then

Context level 2
ctrl => if
mode => deferred
"else" => #<XfOOrth::LocalSpec:0x21eaf30>
"then" => #<XfOOrth::LocalSpec:0x21eaea0>

Context level 1
virtual machine => VirtualMachine instance <Main>
mode => execute

Context level 2
ctrl => if
mode => deferred
"then" => #<XfOOrth::LocalSpec:0x21eaea0>

Context level 1
virtual machine => VirtualMachine instance <Main>
mode => execute

The first)context! executes in the body of the “if” clause and the second one executes in
the body of the “else” clause. Note how a local method “else” is defined in the first block,
but is no longer defined in the second context listing. This reflects the fact that only one
“else” clause is allowed in a “if” statement.

Another example is a simple method:

>: fred)context! dup + ;

Context level 2
mode => compile
ctrl => :
action => #<Proc:0x22702e0@C:/.../compile_library.rb:17 (lambda)>
virtual machine => VirtualMachine instance <Main>
"var:" => #<XfOOrth::LocalSpec:0x22700d0>
"val:" => #<XfOOrth::LocalSpec:0x2270010>
"var@:" => #<XfOOrth::LocalSpec:0x226bed0>
"val@:" => #<XfOOrth::LocalSpec:0x226bd98>
"super" => #<XfOOrth::LocalSpec:0x226bc00>
";" => #<XfOOrth::LocalSpec:0x226bb10>

Context level 1
virtual machine => VirtualMachine instance <Main>
mode => execute

The context activity reflects the activities of the compiler in compiling the code. The mode is
compile mode, the ctrl is a “:” since that started the compile, an action is pending to attach
the method when the compilation is completed and several local methods are defined.
These include methods for local and instance data, access to the super-method, and the
“;” that ends the compilation process.

The)context! method may be used to gain insight into the compilation process. Since it
executes immediately, it does not affect the code generated.

Page 94 of 354

Compiler Modes

Perhaps the most important attribute maintained in the context chain is the current compiler
mode. There are a grand total of five modes supported, but that is an over-simplification.
The nesting of modes means that they overlap and interact with each other.

Execute Mode:

In Execute mode, as each language token is processed, it is translated into virtual machine
source code111 and executed. This is the initial mode of fOOrth whenever compilation of a
code source (such as the console, a file, or a string) begins. Thus execute mode is always
the root of the nested mode state.

Deferred Mode:

Some language constructs (like most control structures) cannot be evaluated on a token by
token basis. For example, the operation of an “if” statement can only be evaluated when the
entire statement is available. The deferred mode defers evaluation of the source code until
enough code has been buffered112. Once this has been accomplished, the system returns to
the previous mode.

Compile Mode:

In compile mode, language tokens are processed into a buffer. When compilation
concludes however, this code is not executed. Instead it is used to define a method on a
target: namely a class, object, or the virtual machine.

Delayed Compile Mode:

If an attempt to enter compile mode is detected while in either the deferred or compile
modes, the delayed compile mode is entered. In this mode, the source code is buffered.
The compilation process is in effect, frozen, and then embedded in the output code stream
to be executed at a later time. This mode is needed to support features like conditional
compilation.

Suspended Compile Mode:

In FORTH, a feature exists that allows compilation to be suspended, and execution mode
nested under it for a segment of code. This allows actions to be performed at compile time.
The special “immediate” methods are an example of this. The generalized suspended
mode is not used at this time.

Nested (Not Really A) Mode:

For some constructs, it is necessary to nest a context without changing the mode. That is
the job of the nested (un) mode. It provides an additional level of context with no mode
shift. This is mostly used in array, hash, and procedure literals.

111 That is to say, Ruby source code.
112 Lack of a deferred mode is why classic FORTH does not support control structures at the command line.

Page 95 of 354

Tracking the Virtual Machine

As important as the context is to the state of the compiler, it is only part of the story. The
other major player in this drama is the Virtual Machine itself. So fOOrth provides two
introspection methods to reveal key points in the state of the VM. These commands are)vm
and its immediate version)vm!.

The following is the VM state at the console prompt:

>)vm

VirtualMachine instance <Main>
 Ruby = #<XfOOrth::VirtualMachine:0x22049a0>
 Stack = []
 Nesting = 1
 Quotes = 0
 Debug = false
 Show = false
 Force = false
 Start = 2015-05-03 09:49:08 -0400
 Source = The console.
 Buffer = ")vm"

The snippets file show.foorth reveals the tracking of code sources when loading code:

>)load"docs/snippets/show
Loading file: docs/snippets/show.foorth

VirtualMachine instance <Main>
 Ruby = #<XfOOrth::VirtualMachine:0x22049a0>
 Stack = []
 Nesting = 1
 Quotes = 0
 Debug = false
 Show = false
 Force = false
 Start = 2015-05-03 09:49:08 -0400
 Source = A file: docs/snippets/show.foorth
 Buffer = ")vm"
Completed in 0.1 seconds

As can be seen, the VM has its vital stack, source, and tracking for quotes and structure
nesting as well as various optional modes.

Note that the Force flag is a hold-over from FORTH. This flag overrides the immediate
status of the next word compiled, forcing it to be compiled rather than executed. At this
point, this feature is not employed in fOOrth. Like the return stack, this may be removed at
some point if it does not prove useful.

Page 96 of 354

Routing

Message routing in fOOrth has two separate but interrelated aspects: When methods are
being defined a method specification must be created and stored in the appropriate
location. This creates routing information. Then when methods are being compiled into
code, the compiler must be able to locate the correct method specification so that the
correct output code is generated. This uses routing information.

The key responsibility of these specifications is to determine the message receiver when
the method is compiled. This is one area where the terse, concise RPN of fOOrth can be a
liability. The lack of redundancy sometimes makes it difficult to determine the intended
message receiver.

In FORTH, this is never an issue since all words exist as subroutines of the virtual machine.
In fOOrth, a number of factors determine the type of method and thus its routing. These
are:

1. The defining word used to create the method.

2. The receiver of the defining word used to create the method.

3. The name of the method.

The various method mapping and routing targets are reflected in the ways by which
methods may be defined. These next sections review the types of methods, their mapping
and routing, and how they are used in the fOOrth language system.

Virtual Machine Methods

Virtual Machine methods are the part of fOOrth that comes closest to classical FORTH. In
these methods the target of the method is the current virtual machine associated with the
executing thread and the compiler that created the method in the first place. Since there is
always a virtual machine present, these methods are never out-of-context. This allows
these methods to support immediate mode in which methods are executed even when the
system is in a deferred or compile state.

To define a standard Virtual Machine method use:

: name (method body here) ;

To define an immediate method use this similar format:

!: name (method body here) ;

The rules for naming virtual machine methods are the most liberal. They must not contain
spaces, and if a " is present it is the last character in the name and a string literal is part of
the method name when run. See String Literals in the section the Syntax and Style of
fOOrth.

Page 97 of 354

Shared Methods

Shared methods are those methods that are shared by all the member of a class and its
sub-classes. All of the different sorts of shared methods a defined using the following
construction:

A_Class .: method_name (method body here) ;

The method name may not contain spaces. Further the method name is responsible for
determining the routing used and any embedded string data.

The lead character determines the routing:

• “.” - indicates that the message is routed to the top-of-stack element (TOS)

• “~” - indicates that the message is routed to the “self” entity of the method (see the
section Self below). Since these messages are only routed to the object itself, they
are in effect private methods.

• Other – these methods are used to implement dyadic operators. To do this they are
routed to the next element on the stack (NOS). This corresponds to the “left binding”
of dyadic operators.

The presence of a " character in the method name indicates a trailing string is embedded in
the method name. See String Literals in the section the Syntax and Style of fOOrth. Shared
methods add an additional criteria on the use of embedded strings:

If the shared method is routed to TOS and there is an embedded string, then the class of
the method must be String, otherwise an error is reported.

Exclusive Methods

Exclusive methods113 are defined on an individual object as opposed to all the instances of
a class of objects. All of the different sorts of exclusive methods are defined using the
following construction:

an_object .:: method_name (method body here) ;

The method name may not contain spaces. Further the method name is responsible for
determining the routing used and any embedded string data in the same manner as shared
methods.

Shared Stub Methods

Shared Stub Methods are methods that are disallowed for this class, or placeholders for
classes derived from this class. They can be either class methods or instance methods.
Attempting to send a message associated with a stub method will result in an error.

At this time there is no compiler support for creating shared stubs. Currently, they are part
of the implementation but not yet part of the language.

113 In Ruby these are called “singleton” methods, not to be confused with the singleton design pattern.

Page 98 of 354

Exclusive Stub Methods

Exclusive Stub Methods are methods that are disallowed for this object, or placeholders for
objects cloned from this object. Attempting to send a message associated with a stub
method will result in an error.

At this time there is no compiler support for creating shared stubs. Currently, they are
supported internally, but not used or and not part of the language.

Local Methods

Local methods are those methods associated with the current local compiler context. Since
this compiler context only exists while the compiler is running, all such methods must have
the immediate attribute so that they execute while the context is still around.

At this time there is no compiler support for local methods. Currently, they are part of the
implementation but not yet part of the language.

Summary

The various combinations of the above are summarized below:

Defining
Word

DW
Receiver

Method
Name

Message
Routing

Notes

: N/A any114 VM115 A virtual machine method.

.:

A Class .name TOS116 A public shared instance method.

A Class ~name Self117 A private shared instance method.

A Class other NOS118 A public shared dyadic operator.

N/A invalid119 N/A Not allowed: Error.

.::

A Class .name TOS A public class method.

An Object .name TOS An public exclusive instance method.

A Class ~name Self A private class method.

An Object ~name Self A private exclusive instance method.

A Class other NOS A public class exclusive dyadic operator

An Object other NOS A public exclusive dyadic operator.

N/A invalid N/A Not allowed: Error.

114 The names of Virtual Machine methods have no restrictions except that they contain no spaces.
115 The message receiver is the Virtual Machine.
116 The message receiver is the Top element of the Data Stack.
117 The message receiver is the implicit “self” of the method owner.
118 The message receiver is the Second element of the Data Stack.
119 Any method beginning with a digit, an upper case letter, $, #, or @ is invalid and will generate an error.

Page 99 of 354

Routing Internals

As code is being compiled, the specification for each method must be located. This task is
performed by the virtual machine's linked list of context objects. This is the sensible place
for this to occur as routing is context sensitive.

The process of routing involves searching for the specification in an ordered list of places.
This list is sensitive to the name of the method being processed as well as the target of the
compilation process and any local, context sensitive definitions. This is summarized below:

Metho
d

.name ~name @name $name #name other

Filter
Regex

/^\./ /^~/ /^@/ /^\$/ /^#/

Search
List

Local
Object

VM
TOS

Local
Target Class

Target
Object

VM
Self

Local
Target Class

Target
Object

VM
Error

Local
Global
Error

Local
VM

Error

Local
Object

VM
Global
Error

Where the search list entries are defined as:

Search Location Search Description

Local Search the compiler context tree for a specification.

Object Search the class Object for a specification.

VM Search the class VirtualMachine for a specification.

Target Class Search the class targeted by this compile action (if any) for
a specification. Note this also searches any parent classes
of the target class.

Target Object Search the object targeted by this compile action (if any)
for a specification. Note this also searches the object's
class and any parent classes of the that class.

Global Search the global name space for a specification.

TOS Assume that this method uses TOS routing and create a
temporary default specification.

Self Assume that this method uses Self routing and create a
temporary default specification.

Error Unable to find a specification. Signal an error. (See Spec
Error below)

Page 100 of 354

Spec Errors

When compiling a token into a method or looking it up to executed interactively, the fOOrth
virtual machine performs several checks based on the text of the language token. A Spec
Error is reported when this search is unable to locate a specification for the token. A Spec
Error takes the form:

F11: ?name?

There are two basic ways that a spec error may be encountered:

The method is out of context

The first of these is that the programmer has written code that contains context sensitive
methods, outside of that context. As a classic case of this consider the “if” and the “else”
methods. Normally “else” only makes sense if there is an “if” for it to be “bound” to. Thus if
you simply enter “else” there are potentially two outcomes:

>else

F10: ?else?

Or:

>else

F11: ?else?

In the first case, the system has never encountered an “if” statement, so “else” is
completely undefined. In the second case , “if” statements have been encountered, but the
“else” is out of context. Given how common “if” statements are, this second error message
is far more likely, but for rarer control structures, the first error may be seen.

The routing information is incorrect

The second way to get a spec error is caused by the routing information not being set up
correctly. To be clear, this should not happen. They are a sort of internal compiler error that
things are not quite right. As such this version needs to be reported as a bug.

As this error should not happen, there is currently no example of this case. However,
should one occur, it would likely take the form of a spec error on a method that should be in
the correct context.

Page 101 of 354

Page 102 of 354

Self

Whenever code executes in the fOOrth language system, there is an object that “owns” that
code. Even code run at the console interactively belongs to an object, the virtual machine.

In fOOrth, the “self” method gives the programmer explicit access to this owning object.
Let's try this from the console:

>self .
VirtualMachine instance <Main>

The console code is run in the context of an instance of a Virtual Machine named “Main”.
What about some methods? Here is a simple method:

>: show_self self . ;

>show_self
VirtualMachine instance <Main>

This has the same owner which is not unexpected as show_self is a virtual machine
method. How about something more interesting:

>class: MyClass

>MyClass .: .show_self self .name . ;

>MyClass .new .show_self
MyClass instance

For this shared method on the class MyClass, self is an instance of MyClass.

Applying Self

So far, the self value seems pretty academic. Let's see the ways this value affects fOOrth
code:

1. The self is the target for self routed methods. These are methods that begin with “~”
(see Shared Methods and Exclusive Methods above). The use of self routing has big
savings. There is no need to retrieve the value, “~” methods can act on it without any
preamble. There is no need to worry about where the receiver is on the stack, self is
always available.

2. For TOS routed methods, access to self is as simple as “self .method_name”. This
was done in the MyClass example above. The self value is a free value that does not
need to be declared.

3. When instance values and variables (see Data Storage in fOOrth above) are
created, they are always applied to the self object. Access to these values and
variables is also in reference to self. Thus, by default, these data are only directly

Page 103 of 354

accessible inside methods of the object holding those data.

4. In some methods that take a block, the self in the block is often very useful. A good
example of this is in file I/O classes line InStream (see below). The InStream
.open{ … } method for example. In the block (delimited by the { and } characters) self
is defined to be the InStream instance. This allows easy access to the file data with
“~” methods.

Changing Self

There are times that we all wished we were someone else. In a fOOrth program there are
instances where it would be advantageous to have self be something else. This is
accomplished using the .with{{ … }} construction. A few simple examples:

>"Test String" .with{{ self .name . }}
String instance
>MyClass .new .with{{ self .name . }}
MyClass instance

The receiver of the “.with{{“ method becomes the “self” within the block it defines. The uses
of these control structures include those listed above, but there are some additional points
specific to this application:

1. By applying a .with{{ … }} clause, the program gains access to “~” methods of the
target. In addition, it also allows access to instance values and variables of that
object. On the downside, it removes access to “~” methods and instance values and
variables of the method the .with{{ … }} clause was contained in.

2. This clause makes it easy to define new instance values and variables to an
individual object. This is much easier to do than creating an exclusive method and
then executing it once. This facilitates the setup of prototype objects (see Prototypes
above).

3. A .with{{ … }} clause can be used to take a value and give easy access to that value
within the executed block without having to create a local value.

4. Access to the self value is generally faster than other forms of access. Thus this
construct can yield performance enhancements.

Page 104 of 354

Boolean Data

In fOOrth, there is no class called Boolean. Instead, the functionality of Boolean logic are
built into other classes, and not always the class you'd expect. Thus Boolean data could
use a little explanation and clarification.

What values represent true and false?

This is fundamental to the operation of fOOrth and in this area, fOOrth pretty much follows
Ruby's lead. Here is a complete overview of what constitutes true and false:

False Values True Values

false
nil

Everything else!

That's it. In particular, the number 0, and the empty string are true, and not false.

Processing Boolean Data

In processing Boolean data, fOOrth takes the common approach of processing from the
perspective of the true or false message receiver. This technique goes back to the very
earliest object oriented programming systems. What may surprise is where this processing
takes place. This is illustrated below:

False Processing True Processing

False
Nil

Object

Note that while false processing occurs in the False and Nil classes, true processing occurs
in the Object class and not True class. In fact the only purpose for True class is to be the
class for the value true. It has no methods of its own. All of the work processing true values
is in the Object class.

Boolean Constants

Boolean value constants are: true, false and nil. These values may be used in any context.

Page 105 of 354

Page 106 of 354

Numeric Data

The fOOrth language system has an elaborate level of support for numeric data that bears
close examination in its own right. The numeric class tree consists of these classes:

Class Description

Numeric The abstract base class for all concrete numeric values.

 Complex
Complex numbers in the form a+bi where “a” and “b” represent real
numbers and “i” represents the square root of -1.

 Float The class of floating point numbers based on the IEEE standard.

 Integer An abstract class for whole numbers

 Bignum120 The class of really really big whole numbers

 Fixnum The class of whole number that fit into one memory word.

 Rational
Rational number in the form a/b where “a” and “b” are whole number and
“b” is not zero.

In this system most operations are defined at the level of the Numeric class with a few
exceptions:

• Integer defines a few “bit” oriented operations (and, or, xor, etc) that are specific to
whole numbers.

• Complex stubs out several methods that require values to be comparable as
magnitudes. Complex numbers are not magnitudes so these operations are invalid.
See the Complex class below for more details on the methods that are affected.

120 The presence of the Bignum and FixNum classes is a case of the Ruby implementation “leaking” through
to the fOOrth language. For operations on integer values, the use of the Integer class is strongly
recommended.

Page 107 of 354

Page 108 of 354

String Data

The string data in fOOrth also bears closer examination. There are two classes of string
data available in fOOrth: String and StringBuffer. The following table compares and
contrasts these classes:

String class StringBuffer class

Methods A full slate of string methods.
All string methods plus a
number of additional string
buffer only methods.

The operation of string
methods

String methods applied to a string or a string buffer create new
string objects without mutation side effects.

The operation of string
buffer methods.

Not applicable
StringBuffer methods applied
to a string buffer mutate the
original string buffer “in place”.

Literal Form "abcd" "abcd"*

The .new method.
Creates an empty, immutable
string. Not very useful.

Creates an empty mutable
string buffer that can be further
updated by appending, etc.

Is immutable? Yes No

This splitting of the string data type into mutable and immutable types is not native to the
Ruby base language121. It is a construct of the fOOrth compiler and language libraries.

121 Please see http://teuthida-technologies.com/?p=1681 for a discussion of the thinking that lead to this
major change in the fOOrth language system.

Page 109 of 354

http://teuthida-technologies.com/?p=1681

Page 110 of 354

Procedure Data

It may be odd to consider that code (procedures) be treated as data122, but in fOOrth, this is
exactly the case. With the Procedure class of objects, procedures can be created, stored,
and passed as arguments to methods.

In addition, fOOrth supports Procedure Literal values, in much the same way that it
supports numeric or string literal values. With strings, any method whose name ends with a
double quote mark (") will be followed by a string literal that ends when the matching
closing double quote mark is encountered.

It is similar with procedures. Any method whose name ends with “{{“ contains a procedure
literal value that ends when the matching “}}” is found. The simplest example of this is the
“{{“ with no method name:

{{ dup + }}

This code creates a simple procedure and leaves a reference to that procedure on the
stack. This is similar to the action of the string literal:

"Testing 1 2 3"

Which leaves a reference to the string “Test 1 2 3” on the stack.

Values and Indexes

A very common use for procedure literals is to serve as the “brains” for action oriented
methods like .each{{. As can be seen, the .each{{ method ends with {{ so a procedure literal
follows. Like many such methods, the .each{{ method needs to send some additional data
to the procedure. These data are a value and the index associated with that value. Inside
the procedure these are accessed with the local methods “v” and “x” respectively.

Note: If no value or index are defined in the current context, then the local methods “v” and
“x” simply return the value nil.

122 Procedures as data is in fact one of the fundamental principles of functional programming.

Page 111 of 354

Page 112 of 354

A fOOrth Reference

The following sections contain a class by class reference to the fOOrth language. For each
class, a number of sub-sections, some optional, are present. These are:

• A summary of the class's inheritance. For example: “Inheritance: Array ← Object”

• A summary of the various sorts of class methods, instance methods, stubs, and
helper methods. Some or all of these may be absent if they are not present in the
class under discussion.

• A description of literal values of this class, if they are supported.

• A description of other optional attributes of the class such as special methods for
creating instances of the class, special values, formatting, parsing, etc.

• Class methods. These are methods that bind to the class object itself. That is, class
methods are exclusive methods of the class object.

• Instance methods. These are methods that bind to instances of the class being
discussed. That is, class methods are shared methods of the class object.

• Stub methods. These are methods that are disallowed for this class, or placeholders
for classes derived from this class. They can be either class methods or instance
methods. Attempting to send a message associated with a stub method will result in
an error.

A typical method looks description like:

[array object] + [array]

Routing: NOS

This method overrides the stub defined in the Object class. For arrays, the plus operation
is defined as concatenation. The result is a new array with the object appended. If the
object is also an array, the elements of that array are concatenated.

Note: This method does not mutate the original array.

Code Result

[1 2] 3 + [1 2 3]

[1 2] [3 4] + [1 2 3 4]

[1 2] [[3 4]] + [1 2 [3 4]]

Where the title line is a summary of the action of this method. The first [] describes the

Page 113 of 354

required conditions on the stack before the method is executed, the method name along
with possible embedded arguments follows, and the trailing [] describes conditions on the
stack after the method has executed.

The routing line describes the type of message routing used. These can be VM, TOS, NOS,
Self, or Compiler Context. See Routing above for more details.

Then a (clear, concise and illuminating) description of the method and any noteworthy or
cautionary information follows.

Finally, a series of examples, depicting some sample code and the results (on the stack) of
executing that code.

Note that some methods have further sections that describe any local methods created
within its context. These are described under the sub-heading of “Local Methods”. Local
methods only exist within the context of the methods that create them. When that context
ends, those methods are no longer accessible.

Page 114 of 354

Array

Inheritance: Array ← Object

Array Class Methods =
.new_size .new_value .new_values .new{{

Array Shared Methods =
! .^left .midlr .push_left! .to_bundle
+ .^mid .min .push_right .to_duration
.+left .^midlr .peek_left .push_right! .to_duration!
.+mid .^right .peek_left! .reverse .to_h
.+midlr .each{{ .peek_right .right .to_s
.+right .empty? .peek_right! .scatter .to_sync_bundle
.-left .keys .pop_left .select{{ .to_t
.-mid .left .pop_left! .shuffle .to_t!
.-midlr .length .pop_right .sort .values
.-right .map{{ .pop_right! .split <<
.[]! .max .pp .strmax >>
.[]@ .mid .push_left .to_a @

Helper Methods =
.gather .join .new [gather

Array objects123 are collections of data indexed by an integer. In an array of size N, where N
is an arbitrary, non-negative, non-stellar, whole number, the index values from 0 through N-
1. The fOOrth language system supports the creation of array literals and has several
methods for putting data into and pulling data out of arrays.

Array Literals

Array literals are supported by the virtual machine method “[” and a locally defined method
“]”. The general usage is:

[(data generating code goes here)]

Where the data generation code is code that deposits zero or more data elements onto the
stack. When the closing “]” is encountered, these data elements are scooped up and
placed into an array at the top of the stack. Here are some illustrations of array literals in
action:

>[] .
[]
>[(data generating code goes here)] .
[]
>[1 2 3] .
[1, 2, 3]
>[2 "for" 1 true] .

123 Please see http://en.wikipedia.org/wiki/Array_data_structure for more information.

Page 115 of 354

http://en.wikipedia.org/wiki/Array_data_structure

[2 "for" 1 true]

Some points of interest:

• The first two examples both create “empty” arrays with zero data elements.

• Array data do NOT need to be the same “type” of data. Mixing is allowed.

• Any statements that generate data are permitted. Consider:

>[1 11 do i loop] .
[1 2 3 4 5 6 7 8 9 10]
>[1 11 do i dup * loop] .
[1 4 9 16 25 36 49 64 81 100]

• Array literals may be nested. Just be sure to properly nest the brackets.

>[1 2 [3]] .
[1 2 [3]]

Array Literal Methods

[stuff] [[[stuff]]

Routing: VM

This method starts the creation of an array literal. It does so by taking the entire contents
of the data stack and placing it into a holding array. This frees up the stack for the task of
creating the array.

Code Result

1 2 [[1 2]

Local Methods:

[[stuff] d1 d2 … dn]] [stuff, [d1, d2, … dn]]

Routing: Compiler Context.

This method takes the data that has been gathered onto the stack and creates the array
literal while also restoring the deeper levels of the stack.

Code Result

1 2 [3 4] 1 2 [3 4]

Array Literals in Action

The following shows the action of the code 1 2 [3 4 5] with)show and)debug active:

>1 2
Tags=[:numeric] Code="vm.push(1); "
Tags=[:numeric] Code="vm.push(2); "

Page 116 of 354

[1 2]
>[
Tags=[:immediate] Code="vm._214(vm); "
 nest_context
 Code="vm.squash; "

[[1 2]]
>>3 4 5
Tags=[:numeric] Code="vm.push(3); "
Tags=[:numeric] Code="vm.push(4); "
Tags=[:numeric] Code="vm.push(5); "

[[1 2] 3 4 5]
>>]
Tags=[:immediate] Code="vm.context[:_311].does.call(vm); "
 unnest_context
 Code="vm.unsquash; "

[1 2 [3 4 5]]

Queues, Stacks, and Deques

In fOOrth, ordinary arrays may serve as queues, stacks, and deques. For further
information on this topic, please refer to the chapter above Data Collections in
fOOrth:Moving Data.

Class Methods

[Array] .new [[]]

Routing: TOS

This method is actually the default implementation inherited from the Object class. It
creates a new, array object with zero data elements. It is equivalent to the array literal
“[]”.

Code Result

Array .new []

[] []

Page 117 of 354

[size Array] .new{{ … }} [[d1, d2, d3 … dsize]]

Routing: NOS (since the Procedure Literal is TOS)

It creates an array of size elements where the values are created by the embedded
procedure literal block. If no value is left on the stack, an error occurs. The current element
index is available in the block via the local method “x”. For more information on the
methods local to the embedded procedure, see the Procedure class.

Code Result

10 Array .new{{ x }} [0 1 2 3 4 5 6 7 8 9]

0 Array .new{{ x dup * }} [0 1 4 9 16 25 36 49 64 81]

10 Array .new{{ }} F30: Data Stack Underflow: pop

[size Array] .new_size [[01, 02, 03 … 0size]]

Routing: TOS

This method creates an array of the specified size, pre-filled with the value zero.

Code Result

5 Array .new_size [0, 0, 0, 0, 0]

0 Array .new_size []

-4 Array .new_size E01: negative array size

"apple" Array .new_size F40: Cannot coerce a String instance to an
Integer instance

[value Array] .new_value [[value]]

Routing: TOS

This method creates an array with a single element, value. It is equivalent to the
expression “[value]”.

Code Result

42 Array .new_value [42]

Page 118 of 354

[value size] .new_values [[value1, value2, value3 … valuesize]]

Routing: TOS

This method creates an array of the specified size and pre-filled with the specified value.

Note: If the value used is mutable, be warned that the same value is used for all of the
array elements and a change to one element will affect all of them.

Code Result

false 5 Array .new_values [false, false, false, false, false]

"Hello" 3 Array .new_values [“Hello”, “Hello”, Hello”]

Instance Methods

[value array] ! []

Routing: TOS

This method overrides the stub method defined in Object. The store data operator is
normally used to store a new value via a data reference. It happens to also work with
arrays, but this is an edge case. When applied to an array, the value is stored in the data
element indexed by the value zero (0).

Note: This also happens to be the implementation of the “!” operator used with references
in general. In that context, this method updates the value associated with a reference. In
terms of classical FORTH, it stores a value into a variable.

Code Result

7 some_array ! (some_array[0] equals 7)

42 myvar ! (Updates the value of myvar to 42)

[array object/array] + [array]

Routing: NOS

This method overrides the stub defined in the Object class. For arrays, the plus operation
is defined as concatenation. The result is a new array with the object appended. If the
object is also an array, the elements of that array are concatenated.

Note: This method does not mutate the original array.

Code Result

[1 2] 3 + [1 2 3]

[1 2] [3 4] + [1 2 3 4]

[1 2] [[3 4]] + [1 2 [3 4]]

Page 119 of 354

[width source_array/object target_array] .+left [array]

Routing: TOS

This method removes the first (leftmost) width elements from a copy of the target array
and replaces them with the elements from the source array.

Note: This method does not mutate the original array.

Code Result

2 [9] [1 2 3] .+left [9 3]

2 9 [1 2 3] .+left [9 3]

[posn width source_array/object target_array] .+mid [array]

Routing: TOS

This method removes width elements from the target array starting at position “posn”. It
then inserts the elements from the source array into the “gap”, creating a new array in the
process.

Notes:

• This method does not mutate the original array.

• Only non-negative positions and widths are supported.

Code Result

1 2 [5] [1 2 3 4] .+mid [1 5 4]

1 2 5 [1 2 3 4] .+mid [1 5 4]

-1 2 5 [1 2 3 4] .+mid F41: Invalid index: -1 in .+mid

1 -2 5 [1 2 3 4] .+mid F41: Invalid width: -2 in .+mid

Page 120 of 354

[left right source_array/object target_array] .+midlr [array]

Routing: TOS

This method removes elements from the target array starting at position “left” and ending
at position “right” counting from the end of the array. It then inserts the elements from the
source array into the “gap”, creating a new array in the process.

Notes:

• This method does not mutate the original array.

• Only non-negative widths are supported.

Code Result

1 1 [8 9] [1 2 3 4 5] .+midlr [1 8 9 5]

1 1 "apple" [1 2 3 4 5] .+midlr [1 “apple” 5]

-1 1 "apple" [1 2 3 4 5] .+midlr F41: Invalid left width: -1 in .-midlr

1 -1 "apple" [1 2 3 4 5] .+midlr F41: Invalid right width: -1 in .-midlr

[width source_array/object target_array] .+right [array]

Routing: TOS

This method removes the last (rightmost) width elements from the target array and
replaces them with the elements of the source array.

Notes:

• This method does not mutate the original array.

• Only non-negative widths are supported.

Code Result

3 [8 9] [1 2 3 4 5] .+right [1 2 8 9]

3 "apple" [1 2 3 4 5] .+right [1 2 “apple”]

-3 "apple" [1 2 3 4 5] .+right F41: Invalid width: -3 in .+right

Page 121 of 354

[width array] .-left [array]

Routing: TOS

This method removes the first (leftmost) width elements from a copy of the source array.

Notes:

• This method does not mutate the original array.

• Only non-negative widths are supported.

Code Result

3 [1 2 3 4 5] .-left [4 5]

-3 [1 2 3 4 5] .-left F41: Invalid width: -3 in .-left

[posn width array] .-mid [array]

Routing: TOS

This method removes width elements from a copy of the array starting at position “posn”.

Notes:

• This method does not mutate the original array.

• Only non-negative positions and widths are supported.

Code Result

1 2 [1 2 3 4 5] .-mid [1 4 5]

-1 2 [1 2 3 4 5] .-mid F41: Invalid index: -1 in .-mid

1 -2 [1 2 3 4 5] .-mid F41: Invalid width: -2 in .-mid

Page 122 of 354

[left right array] .-midlr [array]

Routing: TOS

This method removes elements from the target array starting at position “left” and ending
at position “right” counting from the end of the array. Put another way, it keeps left
elements on the left and right elements on the right and drops the middle.

Notes:

• This method does not mutate the original array.

• Only non-negative widths are supported.

Code Result

1 1 [1 2 3 4 5 6] .-midlr [1 6]

-1 1 [1 2 3 4 5 6] .-midlr F41: Invalid left width: -1 in .-midlr

1 -1 [1 2 3 4 5 6] .-midlr F41: Invalid right width: -1 in .-midlr

[width array] .-right [array]

Routing: TOS

This method removes the last (rightmost) width elements from a copy of the array.

Notes:

• This method does not mutate the original array.

• Only non-negative widths are supported.

Code Result

2 [1 2 3 4 5 6] .-right [1 2 3 4]

-2 [1 2 3 4 5 6] .-right F41: Invalid width: -2 in .-right

Page 123 of 354

[value index array] .[]! []

Routing: TOS

Store the specified value at the index of the array.

Notes:

• If the index is beyond the end of the array, the array is extended to encompass the
new index. Cells between the previous last element and the new one are set to nil.

• Negative indexes access elements counting from the end of the array with -1 being
the last element of the array.

• This method does mutate the array.

Code Result

"Hello" 5 $myarray .[]! (“Hello” is stored at location 5 of myarray.)

[1 2 3] val$: $t
5 5 $t .[]!
$t

[1 2 3 nil nil 5]

5 -4 [1 2 3] .[]! E05: index -4 too small for array; minimum:
-3

[index array] .[]@ [value]

Routing: TOS

Retrieve the value stored in the array at the specified index.

Notes:

• If the index does not correspond to a location within the array, the value nil is
returned instead.

• Negative indexes access elements counting from the end of the array with -1 being
the last element of the array.

Code Result

1 [1 2 3 4] .[]@ 2

11 [1 2 3 4] .[]@ nil

-1 [1 2 3 4] .[]@ 4

-11 [1 2 3 4] .[]@ nil

Page 124 of 354

[width array] .^left [array array]

Routing: TOS

Extract width elements from the left of a copy of the array.

Note: This method does not mutate the original array.

Code Result

2 [1 2 3 4] .^left [3 4] [1 2]

[posn width array] .^mid [after]

Routing: TOS

Starting at the specified posn, extract width elements from the middle of a copy of the
array.

Note: This method does not mutate the original array.

Code Result

1 2 [1 2 3 4] .^mid [1 4] [2 3]

[left right array] .^midlr [after]

Routing: TOS

Starting at the specified left margin to the right margin, extract elements from the middle of
a copy of the array.

Note: This method does not mutate the original array.

Code Result

1 1 [1 2 3 4] .^midlr [1 4] [2 3]

[width array] .^right [after]

Routing: TOS

Extract width elements from the left of a copy of the array.

Note: This method does not mutate the original array.

Code Result

2 [1 2 3 4] .^right [1 2] [3 4]

Page 125 of 354

[array] .each{{ … }} [unspecified]

Routing: NOS (since the Procedure Literal is TOS)

This method is the array item iterator. It processes each element of the array in turn,
calling the embedded procedure literal block with the value (v) and index (x) of the current
array item.

For more information on the methods local to the embedded procedure, see the Procedure
class.

Code Result

["1" "2" "3" "4"]
.each{ v x 1+ * . space }

(Prints out:) 1 22 333 4444

["1" "2" "3" "4"] .each{ v . space } (Prints out:) 1 2 3 4

["1" "2" "3" "4"] .each{ x . space } (Prints out:) 0 1 2 3

[array] .empty? [boolean]

Routing: TOS

Is the array argument devoid of data?

Code Result

[] .empty? true

[1 2 3] .empty? false

[d0 .. dN N] .gather [[d0 .. dN]]

Routing: TOS

This method gathers up the top N elements of the stack and gathers them into an array.
This is a helper method of the Integer class.

Code Result

1 2 3 3 .gather [1 2 3]

1 2 3 0 .gather F30: Invalid .gather count value.

1 2 3 -12 .gather F30: Invalid .gather count value.

1 2 3 4 .gather F30: Data stack underflow.

1 2 3 "apple" .gather F20: A String instance does not
understand .gather (_274).

Page 126 of 354

[a1 a2 … aN N] .join [after]

Routing: TOS

Join the top N stack elements into an array. If N is negative or there are fewer than N
elements available, an error occurs.

This is a helper method of the Integer class.

Note: This method is deprecated, use .gather instead.

Code Result

1 2 3 4 4 .join [1 2 3 4]

1 2 3 4 -4 .join F30: Invalid array size: .join

1 2 3 4 44 .join F30: Data Stack Underflow: popm

[array] .keys [array]

Routing: TOS

Given an array, return an array of the indices (or “keys”) of each element of the array.

This method does not mutate the original array.

Code Result

[10 4 2 99] .keys [0 1 2 3]

[width array] .left [array]

Routing: TOS

This method returns an array containing the first (leftmost) width elements of the given
array.

Notes:

• This method does not mutate the original array.

• Only non-negative widths are supported.

Code Result

3 [1 2 3 4 5 6 7] .left [1 2 3]

-3 [1 2 3 4 5 6 7] .left F41: Invalid width: -3 in .left

Page 127 of 354

[array] .length [count]

Routing: TOS

This method computes the number of elements contained in the given array.

Code Result

[1 2 3 4] .length 4

[] .length 0

[array] .map{{ … }} [array]

Routing: NOS (since the Procedure Literal is TOS)

Construct a new array, applying the transformation block to each element. The
.map{{ method processes each element of the array in turn, calling the embedded
procedure literal block with the value (v) and index (x) of the current array item The value
returned by the block is used to populate the new array. If no value is returned, an error
occurs.

For more information on the methods local to the embedded procedure, see the Procedure
class.

Note: This method does not mutate the original array.

Code Result

["1" "2" "3" "4"] .map{ v x 1+ * } [“1” “22” “333” “4444”]

[1 2 3 4]
.map{ v .odd? if v else 0 then }

[1 0 3 0]

[1 2 3 4]
.map{ v .odd? if v then }

F30: Data Stack Underflow: pop

["1" "2" "3" "4"] .map{ v 2 * } [“11” “22” “33” “44”]

["1" "2" "3" "4"] .map{ x 1+ 2* } [2 4 6 8]

[array] .max [value]

Routing: TOS

This method scans through the array searching for the element with the largest value. The
type of the result will match the type of the first element of the array. If comparison with
other values is not supported, an error is raised.

Code Result

[1 6 2 3 4 5] .max 6

["1" 6 2 3 4 5] .max “6”

[1 2 3 4 "apple"] .max F40: Cannot coerce a String instance to an
Integer instance

Page 128 of 354

[posn width array] .mid [array]

Routing: TOS

This method extracts width elements from a copy of the array starting at position “posn”. If
more elements are requested than exist in the array, only available elements are returned.
If the start “posn” is not a valid element index, then the value nil is returned.

Notes:

• This method does not mutate the original array.

• Only non-negative positions and widths are supported.

Code Result

2 2 [1 2 3 4 5 6] .mid [3 4]

2 9 [1 2 3 4 5 6] .mid [3 4 5 6]

9 2 [1 2 3 4 5 6] .mid nil

-2 2 [1 2 3 4 5 6] .mid F41: Invalid index: -2 in .mid

2 -2 [1 2 3 4 5 6] .mid F41: Invalid width: -2 in .mid

[left right array] .midlr [array]

Routing: TOS

This method extracts elements from the target array starting at position “left” and ending at
position “right” counting from the end of the array. If the left and right are such that no
elements are included, an empty array is returned. If the indexes are outside of the array,
nil is returned.

Notes:

• This method does not mutate the original array.

• Only non-negative widths are supported.

Code Result

1 1 [1 2 3 4] .midlr [2 3]

3 3 [1 2 3 4] .midlr []

8 8 [1 2 3 4] .midlr nil

-1 1 [1 2 3 4] .midlr F41: Invalid left width: -1 in .midlr

1 -1 [1 2 3 4] .midlr F41: Invalid right width: -1 in .midlr

Page 129 of 354

[array] .min [value]

Routing: TOS

This method scans through the array searching for the element with the smallest value.
The type of the result will match the type of the first element of the array. If comparison
with other values is not supported, an error is raised.

Code Result

[1 6 2 3 4 5] .min 1

["1" 6 2 3 4 5] .min “1”

[1 2 3 4 "apple"] .min F40: Cannot coerce a String instance to an
Integer instance

[array] .peek_left [array object]

Routing: TOS

This deque method takes a peek at the element at the left side of the array. The source
array is retained on the stack for further processing.

Note: An error occurs if the array is empty.

Code Result

[1 2 3] .peek_left [1 2 3] 1

[] .peek_left F31: Array underflow error on .peek_left

[array] .peek_left! [object]

Routing: TOS

This deque method takes a peek at the element at the left side of the array.

Note: An error occurs if the array is empty.

Code Result

[1 2 3] .peek_left 1

[] .peek_left! F31: Array underflow error on .peek_left!

Page 130 of 354

[array] .peek_right [array object]

Routing: TOS

This deque method takes a peek at the element at the right side of the array. The source
array is retained on the stack for further processing.

Note: An error occurs if the array is empty.

Code Result

[1 2 3] .peek_right [1 2 3] 3

[] .peek_right F31: Array underflow error on .peek_right

[array] .peek_right! [object]

Routing: TOS

This deque method takes a peek at the element at the right side of the array.

Note: An error occurs if the array is empty.

Code Result

[1 2 3] .peek_right! 3

[] .peek_right! F31: Array underflow error on .peek_right!

[array] .pop_left [array object]

Routing: TOS

This deque method removes at the element at the left side of the array. A modified copy of
the source array is retained on the stack for further processing.

Notes:

• This method does not mutate the original array.

• An error occurs if the array is empty.

Code Result

[1 2 3] .pop_left [2 3] 1

[] .pop_left F31: Array underflow error on .pop_left

Page 131 of 354

[array] .pop_left! [object]

Routing: TOS

This deque method removes at the element at the left side of the array.

Notes:

• This method does mutate the original array.

• An error occurs if the array is empty.

Code Result

[1 2 3] val: test_data
test_data .pop_left!
clear test_data

1
[2 3]

[] .pop_left! F31: Array underflow error on .pop_left!

[array] .pop_right [array object]

Routing: TOS

This deque method removes at the element at the right side of the array. A modified copy
of the source array is retained on the stack for further processing.

Notes:

• This method does not mutate the original array.

• An error occurs if the array is empty.

Code Result

[1 2 3] .pop_right [1 2] 3

[] .pop_right F31: Array underflow error on .pop_right

[array] .pop_right! [object]

Routing: TOS

This deque method removes at the element at the right side of the array.

Notes:

• This method does mutate the original array.

• An error occurs if the array is empty.

Code Result

[1 2 3] val: test_data
test_data .pop_left!
clear test_data

3
[1 2]

[] .pop_right! F31: Array underflow error on .pop_right!

Page 132 of 354

[array] .pp []

Routing: TOS

This method is a pretty printer for arrays. The data in the array is displayed with in
columns for an 80 character wide display and a blank line every 50 lines. The primary use
of this method was in preparing the lists of method names used in this guide. No value is
returned.

Code Result

[1 2 3 4 5] .pp Displays “1 2 3 4 5”

[array] .push_left [array]

Routing: TOS

This deque method adds an element to the left side of a copy of the array.

Note: This method does not mutate the original array.

Code Result

0 [1 2 3] .push_left [0 1 2 3]

[array] .push_left! []

Routing: TOS

This deque method adds an element to the left side of the array.

Note: This method does mutate the original array.

Code Result

[1 2 3] val: test_data
0 test_data .push_left!
clear test_data [0 1 2 3]

[array] .push_right [array]

Routing: TOS

This deque method adds an element to the right side of a copy of the array.

Note: This method does not mutate the original array.

Code Result

4 [1 2 3] .push_right [1 2 3 4]

Page 133 of 354

[array] .push_right! []

Routing: TOS

This deque method adds an element to the right side of the array.

Note: This method does mutate the original array.

Code Result

[1 2 3] val: test_data
4 test_data .push_right!
clear test_data [1 2 3 4]

[array] .reverse [array]

Routing: TOS

This method creates a copy of the array with the elements reversed.

Note: This method does not mutate the original array.

Code Result

[1 2 3 4] .reverse [4 3 2 1]

[width array] .right [array]

Routing: TOS

This method extracts the last (rightmost) width elements from a copy of the array.

Notes:

• This method does not mutate the original array.

• Only non-negative widths are supported.

Code Result

2 [1 2 3 4] .right [3 4]

-2 [1 2 3 4] .right F41: Invalid width: -2 in .right

[[d0 .. dN]] .scatter [d0 .. dN]

Routing: TOS

The contents of the array are scattered onto the data stack.

Code Result

[1 2 3 4] .scatter 1 2 3 4

Page 134 of 354

[array] .select{{ … }} [array]

Routing: NOS (since the Procedure Literal is TOS)

This method is used to select elements from an array and place them in a new array. If the
embedded procedure literal block of the select returns true, the element is copied. If it
returns false, the element is omitted. If no value is returned, an error occurs.

For more information on the methods local to the embedded procedure, see the Procedure
class.

Note: This method does not mutate the original array.

Code Result

[1 2 3 4] .select{ v even? } [2 4]

[1 2 3 4] .select{ } F30: Data Stack Underflow: pop

[1 2 3 4] .select{ v .odd? } [1 3]

[1 2 3 4] .select{ x .odd? } [2 4]

[array] .shuffle [array]

Routing: TOS

This method creates a new array with the elements of the source array shuffled.

Note: This method does not mutate the original array.

Code Result

[1 2 3 4 5 6 7 8 9] .shuffle [3 1 5 7 4 8 6 9 2] (Typical result)

[array] .split [the_array_elements]

Routing: TOS

This method splits out the array, placing its elements onto the data stack.

Note: This method is deprecated, use .scatter instead.

Code Result

1 2 [3 4] .split 1 2 3 4

Page 135 of 354

[array] .sort [array]

Routing: TOS

Given an array, return a sorted copy of that array. Note that the elements of the array must
be comparison compatible or an error is returned.

Note: This method does not mutate the original array.

Code Result

[4 1 5 3 6 0] .sort [0 1 3 4 5 6]

[4 1 5 3 "6" 0] .sort [0 1 3 4 5 “6”]

["5" 5 nil 4] .sort F12: A Nil instance does not support <=>.

[1 4 nil 7] .sort F40: Cannot coerce a Nil instance to an
Integer instance

[array] .strmax [width]

Routing: TOS

Given an array, this method determines the width of the largest string representation of an
element. This method is a helper method for the .pp pretty print method.

Note: This method does not mutate the original array.

Code Result

[1 100 3 44] .strmax 3

[array] .to_a [array]

Routing: TOS

Given an array, convert it to an array. Essentially an no-op.

Code Result

[9 6 7 11 11] .to_a [9 6 7 11 11]

[before] .to_bundle [after]

Routing: TOS

Convert an array to a bundle of fibers. This is a helper method for the Bundle class.

Page 136 of 354

[array] .to_duration [duration]

Routing: TOS

A helper method for the Duration class. See that class for more details.

[array] .to_duration! [duration]

Routing: TOS

A helper method for the Duration class. See that class for more details.

[array] .to_h [hash]

Routing: TOS

Given an array, convert it to a hash where each index is the key for each value.

Code Result

[10 44 "hike"] .to_h { 0 10 → 1 44 → 2 “hike” → }

[array] .to_s [string]

Routing: TOS

Convert the array to a string representation of that array.

Code Result

[1 2 3] .to_s “[1 2 3]”

[an_array] .to_sync_bundle [a_sync_bundle]

Routing: TOS

Convert an array to a bundle of fibers. This is a helper method for the SyncBundle class.

[array] .to_t [time]

Routing: TOS

Convert the array to a time object. This is a helper method for the Time class.

[array] .to_t! [time]

Routing: TOS

Convert the array to a time object. This is a helper method for the Time class.

Page 137 of 354

[array] .values [array]

Routing: TOS

Given an array, return an array of its values. Essentially a no-op.

Code Result

[9 6 7 11 11] .values [9 6 7 11 11]

[array object] << [array]

Routing: NOS

This method appends the object to the array. If the object is an array, the array and not the
elements are appended.

NOTE: This method DOES mutate the source array.

Code Result

[1 2 3] 4 << [1 2 3 4]

[1 2 3] [4 5] << [1 2 3 [4 5]]

[array object] >> [array]

Routing: NOS

This method inserts the object at the start of the array. If the object is an array, the array
and not the elements are appended.

NOTE: This method DOES mutate the source array.

Code Result

[1 2 3] 4 >> [4 1 2 3]

[1 2 3] [4 5] >> [[4 5] 1 2 3]

Page 138 of 354

[array] @ [value]

Routing: TOS

This method overrides the stub method defined in Object. The fetch data operator is
normally used to fetch a value from a data reference. It happens to also work with arrays,
but this is an edge case. When applied to an array, the value is fetched from the data
element indexed by the value zero (0).

Note: This also happens to be the implementation of the “@” operator used with
references in general. In that context, this method retrieves the value associated with a
reference. In terms of classical FORTH, it retrieves the a value of a variable.

Code Result

[1 2 3 4] @ 1

myvar @ object

[d0 .. dN] gather [[d0 .. dN]]

Routing: VM

Gather up the contents of data stack into an array. This is a helper method of the Virtual
Machine class.

Code Result

gather []

1 2 3 gather [1 2 3]

Page 139 of 354

Page 140 of 354

Bundle

Inheritance: Bundle ← Object

Bundle Shared Methods =
.add .alive? .length .run .status .step .to_fiber

Helper Methods =
.to_bundle

A bundle is a grouping of light-weight, cooperative routines124 that are called fibers125 in the
fOOrth language system. A bundle may also contain other bundles. The bundle allows
fibers to be run one step at a time, or until completion. Each step of the bundle performs a
step on on of its contained fibers or bundles.

No syntax for Bundle literal values exists. Instead, the .to_bundle method is used to convert
an array of procedures, fibers, or bundles into a bundle.

The Bundle class is not thread-safe. This means that manipulating a bundle from multiple
threads at once can result in unexpected results. Multiple threads are OK so long as only
one thread at a time is actively modifying the bundle. If this condition cannot be met,
consider using the SyncBundle class instead.

Stepping through a Bundle

A bundle object gets work done one step at a time. In each step, one fiber gets a chance to
either perform some task or conclude processing and be removed from the bundle.
Consider the bundle created by the following code:

[{{ begin do_work1 yield again }}
 {{ do_work2 yield }}
 {{ begin do_work3 yield again }}] .to_bundle .run

As work is done, the bundle organizes the fibers into a simple cyclic state machine which
can be described as below:

Step Activity Step Activity

1 do_work1 6 do_work3

2 do_work2 7 do_work1

3 do_work3 8 do_work3

4 do_work1 9 do_work1

5 remove fiber 2 etc etc

Notice how the second fiber only performs work once. During the step five, its slot is
removed from the rotation and from then on, only steps 1 and 3 are executed.

124 Please see: https://en.wikipedia.org/wiki/Coroutine
125 See the section on the Fiber class below and Multi Nexus Programming above.

Page 141 of 354

https://en.wikipedia.org/wiki/Coroutine

Nested Bundles

Bundles can contain bundles as well as fibers. Consider this code:

[{{ begin do_work1 yield again }}
 [{{ begin do_work2a yield again }}
 {{ begin do_work2b yield again }}] .to_bundle
 {{ begin do_work3 yield again }}] .to_bundle .run

When this code runs, the following describes the steps taken.

Step Activity Step Activity

1 do_work1 6 do_work3

2 do_work2a 7 do_work1

3 do_work3 8 do_work2a

4 do_work1 9 do_work3

5 do_work2b etc etc

The fibers of the embedded bundle take turns within the step allocated to the second slot of
the containing fiber. This nested bundle structure is a way to simulate tasks that are to be
performed less frequently.

Frequent Fibers

In addition, there is no reason that a fiber cannot be included in a bundle more than once.
In this case that fiber will receive multiple steps in the run cycle. This is a way to simulate
tasks that are to be performed more frequently. Consider:

[{{ begin do_work1 yield again }}
 {{ begin do_work2 yield again }} over
 {{ begin do_work3 yield again }}] .to_bundle .run

This results in the following sequence of steps:

Step Activity Step Activity

1 do_work1 6 do_work2

2 do_work2 7 do_work1

3 do_work1 8 do_work3

4 do_work3 9 do_work1

5 do_work1 etc etc

Instance Methods

Page 142 of 354

[a_proc_fiber_or_bundle a_bundle] .add []

Routing: TOS

This method is used to add additional fibers to a bundle. These fibers may be derived from
procedures, fibers, or other bundles. When a bundle is added to a bundle, the result is a
nested bundle (see above).

Warning: If fibers needed to be added by code running in one thread to a bundle running
in another thread then the SyncBundle class must be used instead of the Bundle class.
Failing to do so may result in erratic or unreliable behavior.

Code Result

{{ (stuff) }} a_bundle .add(Adds the
fiber to the bundle)

(Adds the fiber to the bundle)

a_fiber a_bundle .add (Adds the fiber to the bundle)

first_bundle second_bundle .add (Adds the first bundle to the second one.)

[a_bundle] .alive? [a_boolean]

Routing: TOS

Does the bundle contain any live fibers?

Code Result

a_bundle .alive? (True or false)

glados .alive? (Still alive)

[a_bundle] .length [a_count]

Routing: TOS

This method returns the number of fibers or bundles contained in this bundle.

Code Result

a_bundle .length a_count

[a_bundle] .run [undefined]

Routing: TOS

This method is used to step through all of the fibers and bundles in this bundle while there
is still at least one of them left. If any of the fibers .yield any data, these will appear on the
data stack.

Code Result

a_bundle .run (Runs the bundle until completed.)

Page 143 of 354

[a_bundle] .status [a_string]

Routing: TOS

This method returns the status of the bundle

Code Result

a_bundle .status “alive” or “dead”

[a_bundle] .step [undefined]

Routing: TOS

This method performs a single step on the next fiber or bundle in this bundle. If that fiber
execute .yield, that data will appear on the data stack.

Code Result

a_bundle .step (Runs a single step.)

[a_procedure or a_bundle or a_fiber] .to_bundle [a_bundle]

[array_of(procedures, fibers, and bundles)] .to_bundle [a_bundle]

Routing: TOS

Convert the argument to a bundle. This method is partially implemented by helpers in the
Array and Procedure classes. This is the principle manner for creating bundles.

Code Result

[{{ (stuff) }} a_fiber a_bundle]
.to_bundle

a_bundle consisting of a fiber derived from a
procedure, a fiber, and another bundle.

{{ (stuff) }} .to_bundle a_bundle consisting of a fiber derived from a
procedure.

a_fiber .to_bundle a_bundle with a single fiber in it.

a_bundle .to_bundle a_bundle with another bundle in it.

[a_bundle] .to_fiber [a_bundle]

Routing: TOS

Bundles follow the same protocols as fibers. So a bundle is converted to a fiber by
returning itself.

ode Result

a_bundle .to_fiber a_bundle

Page 144 of 354

Class

Inheritance: Class ← Object

Class Shared Methods =
)methods .check .is_class? .parent_class
)stubs .check! .new .to_s

Helper Methods =
.: .class class:

For all classes in fOOrth, shared methods defined on a class are expressed through
instances of those classes. However, the Class class is the class of all classes. That is to
say, all classes are instances of the class Class. The Class class is unique in that it is an
instance of itself!126 A consequence of this is that shared methods of the Class class are
class methods of all classes including the Class class.

The shared methods of the Class class mostly deal with the creation of new classes, and
populating those classes with the methods and data needed to accomplish useful work.

Instance Methods

[class] .: method_name … ; []

Routing: VM

This method is used to define new methods for instances of the specified class as well as
instances of any of its sub-classes. These methods execute with “self” set to the instance
that received the message.

The first character of the method name determines the type of method being created. The
following rules apply to the first character of the name: A “.” indicates a public method, a
“~” indicates a private method, “A” through “Z”, “@”, “$”, or “#” are not allowed. All others
indicate a dyadic operator with NOS routing.

See the section Routing above for more details.

Edge Case: When this method is applied to the class Class, unusual behavior ensues.
Any methods defined in this manner become class methods of all classes including the
class Class127.

Code Result

Object .: .one 1 ; (Creates a public method .one)

Object .: ~two 2 ; (Creates a private method ~two)

MyClass .: + (omitted) ; (Creates a dyadic (NOS) method +)

126 All in all, a real class act! See http://en.wikipedia.org/wiki/Class_(computer_programming)
127 Since the class Class is (uniquely) an instance of itself.

Page 145 of 354

http://en.wikipedia.org/wiki/Class_(computer_programming)

Object .: BAD ; F10: Invalid name for a method: BAD

String .: twaddle" (stuff) ; (Creates a method with an embedded string.

55 .: foobar (stuff) ; F13: The target of .: must be a class

Object .: twiddle" (stuff) ; F13: Creating a string method twiddle" on a
Object

Local Methods:

[undefined] super [undefined]

Routing: Compiler Context.

Invoke the definition of this method in the nearest parent class of this class that defines a
method of the same name. The arguments to the super method must match those of the
parent class's implementation of this method. The return values will also be those of the
parent class. If no parent class defines a method of the same name as this one, an error is
generated.

Code Result

class: MyClass
MyClass .: .name "Hi from " super + ;
MyClass .new .name .

Hi from MyClass instance

class TestClass
TestClass .: .broken super ;
TestClass .new .broken

F20: A TestClass instance does not
understand .broken (:_309).

[value] val: local_name []

Routing: Compiler Context.

This method defines a local value in the current method.

See Data Storage in fOOrth, above, for more details on values and variables.

Code Result

10 val: limit (Creates a value named limit set to 10)

[value] var: local_name []

Routing: Compiler Context.

This method defines a local variable in the current method.

See Data Storage in fOOrth, above, for more details on values and variables.

Code Result

10 var: limit (Creates a variable named limit set to 10)

Page 146 of 354

[value] val@: @instance_name []

Routing: Compiler Context.

This method creates an instance value in the instance of the host class.

See Data Storage in fOOrth, above, for more details on values and variables.

Code Result

10 val@: @limit (Creates an instance value named @limit
set to 10)

[value] var@: @instance_name []

Routing: Compiler Context.

This method creates an instance value in the instance of the host class.

See Data Storage in fOOrth, above, for more details on values and variables.

Code Result

10 var@: @limit (Creates an instance variable named @limit
initially set to 10)

[] … ; []

Routing: Compiler Context.

Close off the method definition.

[an_object a_class] .check [an_object or nil]

Routing: TOS

Is the object an instance of a_class or one of its sub-classes. Return the object if it is and
nil if it is not.

Code Result

12 Numeric .check 12

"12" Numeric .check nil

[an_object a_class] .check! [an_object or errorl]

Routing: TOS

Is the object an instance of a_class or one of its sub-classes. Return the object if it is and
an error if it is not.

Code Result

12 Numeric .check! 12

"12" Numeric .check! F42: A String instance is not compatible with a Numeric.

Page 147 of 354

[class] .is_class? [true]

Routing: TOS

This method answers true when sent to a class object because classes are classes!

Code Result

Object .is_class? true

[unspecified class] .new [instance_of_a_class]

Routing: TOS

Create a new instance of the target class. When the instance of the class is created, the
.init method is called on that instance. The unspecified arguments listed above, are the
optional arguments to this .init method. The class Object defines a default implementation
of the .init method that uses no arguments and takes to no action.

Edge Case: When this method is applied to the class Class, unusual behavior ensues.
The result is an anonymous class object. Since this class has no name of its own, it
displays as: “AnonymousClass<18462720>” where the number is its internal ID value.

Code Result

Object .new object_instance

[class] .parent_class [class or nil]

Routing: TOS

Get the parent class of the given class. If there is no parent class (as is the case for the
Object class) then return nil.

Code Result

Complex .parent_class Numeric class

Object .parent_class nil

Page 148 of 354

[class] .subclass: subclass_name []

Routing: VM

Create a subclass of the given class. The name of the new class must conform to the
follow regex:

/^[A-Z][A-Za-z0-9]*$/

This means the the name must start with an upper case letter followed by zero or more
upper and lower case letters or digits. Note the underscores “_” are not allowed.

This is a helper method of the virtual machine.

Code Result

Object .subclass: MyClass (Creates the class MyClass, a subclass of
Object)

Object .subclass: wrong F10: Invalid class name wrong

[class] .to_s [string]

Routing: TOS

Converts the class to a string.

Code Result

Object .to_s “Object”

class: MyClass
MyClass .to_s “MyClass”

[] class: class_name []

Routing: VM

This virtual machine helper method is a shortcut for creating new classes. The expression
class: MyClass is equivalent to Object .subclass: MyClass.

The name of the new class must conform to this regex: /^[A-Z][A-Za-z0-9]+$/

This means the the name must start with an upper case letter followed by one or more
upper and lower case letters or digits. Note the underscores “_” are not allowed.

Code Result

class: MyClass (Creates the class MyClass, a subclass of Object)

class: wrong F10: Invalid class name wrong

Page 149 of 354

Commands

The following are also methods, however, they are designed primarily for interacting directly
with the operator in the form of commands. Commands are distinguished by the leading “)”
in their name128.

[class])methods []

Routing: TOS

List the active methods defined for this class. Stubs are not included in this listing.

>Object)methods
Object Shared Methods =
&& .init .to_i! .to_x! min
)methods .is_class? .to_n <> nil<>
. .name .to_n! = nil=
.class .strlen .to_r ^^ not
.clone .to_f .to_r! distinct? ||
.clone_exclude .to_f! .to_s identical?
.copy .to_i .to_x max

[class])stubs []

Routing: TOS

List the stub methods defined for this class. Stubs are place holder methods that serve
one of two purposes:

1. They are abstract methods in a base class that exist so that a sub-class may
replace the stub with an actual method. The stub ensures that the compiler uses
the correct routing when using the method.

2. They are sentries for methods in a base class that are not valid to be performed on
a particular sub-class. For example, many methods of the Numeric class are not
valid in its sub-class Complex.

>Object)stubs
Object Shared Stubs =
! + 0<= 0> 2* < > and or
)stubs - 0<=> 0>= 2+ << >= com xor
* / 0<> 1+ 2- <= >> mod
** 0< 0= 1- 2/ <=> @ neg

128 This convention is a homage to the command syntax of the APL language on the old PDP-10.

Page 150 of 354

Complex

Inheritance: Complex ← Numeric ← Object

Complex Shared Methods =
.cbrt .e** .split .sqrt

Helper Methods =
.to_x .to_x! complex

Complex Shared Stubs =
.ceil .rationalize_to .to_t! <=> mod
.emit .round < >
.floor .to_t <= >=

A complex number129 is a number expressed in the form a+bi, where a and b are real
numbers and i is the square root of -1. Like other sub-classes of the Numeric class, the
Complex class inherits most of its functionality from its parent class. There is one major
area where this does not apply. All other Numeric sub-classes are magnitudes. As
magnitudes, they may be compared for greater than, less than, etc. While Complex
numbers contain magnitudes (accessed via the .magnitude method) they are NOT
themselves magnitudes. Thus comparison operations (other than equality or inequality) and
many other types of operations are not valid for Complex values.

Complex Literals

Complex literals are supported directly by the compiler. Any number ending in 'i' is
considered to be a complex number. The regular expression detecting potential complex
numbers is:

/\di$/

 Some example values follow:

Literal130 Value131

7i 0+7i

-7i 0-7i

3.7i 0+3.7i

1/2i 0+1/2i

-3-7i -3-7i

3+7i 3+7i

129 See http://en.wikipedia.org/wiki/Complex_number
130 No spaces are permitted within the literal.
131 The real and imaginary parts may be integers, floats or rational numbers. See the respective sections for

more details on those types of literals.

Page 151 of 354

http://en.wikipedia.org/wiki/Complex_number

Instance Methods

[complex] .cbrt [complex1/3]

Routing: TOS.

Find the cube root of the complex numeric value.

Code Result

8+0i .cbrt 2.0+0.0i

[complex] .e** [ecomplex]

Routing: TOS.

Compute the value of e raised to the power of the complex numeric value.

Code Result

1+1i .e** 1.4686939399158851+2.2873552871788423i

[complex] .split [real_part imaginary_part]

Routing: TOS.

Split a complex number into its two component parts.

Code Result

3+4i .split 3, 4

[complex] .sqrt [complex1/2]

Routing: TOS.

Find the square root of the complex numeric value.

Code Result

2+2i .sqrt 1.5537739740300374+0.6435942529055827i

Page 152 of 354

[object] .to_x [complex or nil]

Routing: TOS

This is a helper method of the Object class. Try to convert the object into a Complex. If this
is not possible, return nil. Contrast with .to_x!

Code Result

5 .to_x 5+0i

5.2 .to_x 5.2+0i

"5" .to_x 5+0i

1+2i .to_x 1+2i

"apple" .to_x nil

[object] .to_x! [complex]

Routing: TOS

This is a helper method of the Object class. Try to convert the object into a Complex. If this
is not possible, raise an error. Contrast with .to_x

Code Result

5 .to_x! 5+0i

5.2 .to_x! 5.2+0i

"5" .to_x! 5+0i

1+2i .to_x! 1+2i

"apple" .to_x! Cannot convert a String instance to a
Complex instance

[real_part imaginary_part] complex [complex]

Routing: VM

This is a helper method of the Virtual Machine class. Given two numbers, create a
complex number. If this cannot be done, an error occurs.

Code Result

4 5 complex 4+5i

"apple" 5 complex F40: Cannot coerce a String instance,
Fixnum instance to a Complex

Instance Stubs

A number of methods are stubbed out in the Complex class. All of them are invalid

Page 153 of 354

operations because Complex numbers are not magnitudes. The stubbed out methods are:

.ceil .rationalize_to .to_t! <=> mod

.emit .round < >

.floor .to_t <= >=

Page 154 of 354

Duration

Inheritance: Duration ← Object

.intervals .labels

Duration Shared Methods =
* .as_years .to_duration 2+
+ .days .to_duration! 2-
- .hours .to_s 2/
.as_days .largest_interval .years f"
.as_hours .minutes / format
.as_minutes .months 1+
.as_months .seconds 1-
.as_seconds .to_a 2*

Duration Helper Methods =
a_day a_minute a_month a_second a_year an_hour

Duration Class Stubs =
.new

The Duration class is used to represent a span of time. This contrasts with the Time class
which represents points in time. An analogy can be taken from tennis. The time objects are
like the posts on either side of the court, and the duration is like the net spanning the
distance between them. Thus when one time value is subtracted from another, the result is
the duration, or span of time, between them. This distinction means that Duration objects
are different from Time objects in a number of ways:

Firstly: With a time value, the length, in days of a year or month depends on which year or
month it is. For example the year 2000 was 366 days long while the year 2001 was 365
days long. With durations this is not the case. Here, years and months cannot be related to
any specific year or month, rather they must be tied to a hypothetical average132 year or
month. Thus for the Duration class:

1 year is 365.2425 days or 365 days, 5 hours, 49 minutes, and 12.0 seconds.

1 month is 30.436875 days or 30 days, 10 hours, 29 minutes, and 6.0 seconds.

The definition of days, hours, minutes and seconds exhibit no such complexity133.

Secondly: When formatting a Time, it is typical to convert months into named months, and
days of the week into their name. Since durations are not tied to specific points of time, in a
Duration, we only reference the number of months and days, etc. Thus Duration objects
have their own formatting specification (see Duration Formatting below).

132 These values are based on the Gregorian Calendar. See https://en.wikipedia.org/wiki/Gregorian_calendar
133 For now at least, we ignore anomalies like “leap seconds” that are added on various occasions by the

Time Lords or some such temporal authorities.

Page 155 of 354

https://en.wikipedia.org/wiki/Gregorian_calendar

In many ways, Duration objects are also like Numeric data. There will be many cases where
we will need to compute durations, count them down etc. Thus the Duration class acts like
a Numeric object and can be used in computations. There are however two noteworthy
points:

• The Duration class has direct support for only a subset of arithmetic operators: + -
* /. For other operations, fear not, the duration is automatically converted into a
rational number. If a Duration result is required, the .to_duration method (see below)
can be applied to the result.

Code Result

a_minute 5 * .class Duration

a_minute .sqr .class Rational

• The order of operands matters. Dyadic operators (like +) “bind” to the type of the left
most operand. Thus in the example below, the results have different data types.
Again, the .to_duration method (see below) can be applied to the result.

Code Result

a_minute 12 + .class Duration

12 a_minute + .class Fixnum134

Note: If in doubt, the .to_duration method (see below) can be safely applied to a duration
value with no ill effects and very little time or effort.

Creating Duration Values

Duration objects are not created in the typical fashion. In fact the standard object creating
method, .new is stubbed out and not available. None-the-less there are several ways to
create Duration objects:

• The difference of two time objects is a Duration equal to the span of time between
them.

• The predefined methods a_day, a_minute, etc create Duration objects with the
appropriate span value. See special duration values below for more details.

• The .to_duration method allows a simple number to be converted into a Duration
with a span set to the number of seconds of the number.

• The .to_duration method also works with an array of numbers. These values are
interpreted as [years months days hours minutes seconds]. If fewer than six data
are present, leading values are assumed to be zero. So the following are equivalent:

[1] .to_duration

134 Conversion to another type can have other side-effects. For example, conversion to Fixnum could result
in the loss of the fractions of seconds of the original duration. Similarly, conversion to a float can also result
in loss of accuracy.

Page 156 of 354

[0 0 0 0 0 1] .to_duration.

Special Duration Values

[] a_day [duration]

Routing: VM

Push a duration with a span of a day onto the stack.

Code Result

a_day Duration instance <86400.0 seconds>

[] a_minute [duration]

Routing: VM

Push a duration with a span of a minute onto the stack.

Code Result

a_minute Duration instance <60.0 seconds>

[] a_month [duration]

Routing: VM

Push a duration with the average span of a month onto the stack.

Code Result

a_month Duration instance <2629746.0 seconds>

[] a_second [duration]

Routing: VM

Push a duration with a span of a second onto the stack.

Code Result

a_second Duration instance <1.0 seconds>

Page 157 of 354

[] a_year [duration]

Routing: VM

Push a duration with the average span of a year onto the stack.

Code Result

a_year Duration instance <31556952.0 seconds>

[] an_hour [duration]

Routing: VM

Push a duration with a span of an hour onto the stack.

Code Result

an_hour Duration instance <3600.0 seconds>

Duration Formatting

The formatting facility for Duration objects is derived from the facilities of the Ruby
format_engine gem135. A format string is a string with optional text and zero or more format
sequences. The structure of a format sequence is shown below with elements in brackets
representing optional components.

%[flags][sign][width][.precision]type

The type parameter is a single character that describes the data within the duration being
formatted. The following are supported:

Component Format Types

Type Format Description

d Whole days in the month.

D Total (with fractional) days.

h Whole hours in the day.

H Total (with fractional) hours.

m Whole minutes in the hour.

M Total (with fractional) minutes.

o Whole months in the year.

O Total (with fractional) months.

s Total (with fractional) seconds in the minute.

135 For more details please see: https://rubygems.org/gems/format_engine

Page 158 of 354

https://rubygems.org/gems/format_engine

Type Format Description

S Total (with fractional) seconds.

y Whole years.

Y Total (with fractional) years.

Note: Formats with a “whole” attribute do not support the precision option. Formats with a
“fractional” attribute, default to six digits of precision.

Other Format Types

Type Format Description

B
Brief summary format. The total (with fractional) of the largest, non-zero time
unit.

f Raw float format. Total seconds in floating point format.

r Raw rational format. Total seconds in rational format.

Note: Currently f and r formats do not have label support (See the $ option below)

Format Sign

Type Format Description

+ (The default) The output is right justified within the format width.

- The output is left justified within the format width.

Format Flags

Type Format Description

? Suppress output if the value, or the value for this label (see $ below) is zero.

$
Output the text label appropriate for the value. For example whereas %y outputs
the year, %$y outputs the text “years” (or “year” if there is exactly one year in the
duration object being formatted).

Note: If both the ? and $ options are used, the ? flag must come first in the format string.

Examples

The examples that follow all use the f"format string" method instead of the "format string"
format method. The first form is shorter, and often clearer. The second form must be used
when it is desired to compute or lookup the format string.

This batch of formats are demonstrated with the shared input of “123456 .to_duration”. This
common input is not shown for brevity.

Page 159 of 354

Code Result

f"About %4.1B%$B" "About 1.4 days"

f"%d %h %1.0s" "1 10 36"

f"%d%$d %h%$h %s%$s" "1 day 10 hours 36.000000 seconds"

f"%d%$d %h%$h %1.0s%
$s"

"1 day 10 hours 36 seconds"

f"%d%$d %h%$h %3.1s%
$s"

"1 day 10 hours 36.0 seconds"

f"%3.1D%$D" "1.4 days"

f"%3.1H%$H" "34.3 hours"

f"%3.1M%$M" "2057.6 minutes"

f"%3.1S%$S" "123456.0 seconds"

f"%r" "123456/1"

.to_s "Duration instance <123456.0
seconds>"

Class Methods

[Duration] .intervals [array]

Routing: TOS

Push an array of durations onto the stack. This array contains durations corresponding to
a year, a month, a day, an hour, a minute, and a second.

Code Result

Duration .intervals [Duration instance <31556952.0 seconds>
Duration instance <2629746.0 seconds>
Duration instance <86400.0 seconds>
Duration instance <3600.0 seconds>
Duration instance <60.0 seconds>
Duration instance <1.0 seconds>]

Page 160 of 354

[Duration] .labels [array]

Routing: TOS

Push an array of interval labels onto the stack. These correspond to a year, a month, a
day, an hour, a minute, and a second.

Code Result

Duration .labels [“years” “months” “days” “hours” “minutes”
“seconds”]

Instance Methods

[duration duration or number] * [duration]

Routing: NOS

This is the multiplication operator for the Duration class.

Code Result

a_minute 5 * Duration instance <300.0 seconds>

[duration duration or number] + [duration]

Routing: NOS

This is the addition operator for the Duration class.

Code Result

a_minute 5 + Duration instance <65.0 seconds>

[duration duration or number] - [duration]

Routing: NOS

This is the subtraction operator for the Duration class.

Code Result

a_minute 5 - Duration instance <55.0 seconds>

Page 161 of 354

[duration] .as_days [float]

Routing: TOS

Convert a duration to a float representing the number of days (including fractions) in the
span.

Code Result

a_month .as_days f"%4.2f" “30.44”

500000 .to_duration .as_days f"%4.2f" “5.79”

[duration] .as_hours [float]

Routing: TOS

Convert a duration to a float representing the number of hours (including fractions) in the
span.

Code Result

a_day .as_hours f"%4.2f" “24.00”

500000 .to_duration .as_hours f"%4.2f" “138.89”

[duration] .as_minutes [float]

Routing: TOS

Convert a duration to a float representing the number of minutes (including fractions) in the
span.

Code Result

an_hour .as_minutes f"%4.2f" “60.00”

50000 .to_duration .as_minutes f"%4.2f" “833.33”

[duration] .as_months [float]

Routing: TOS

Convert a duration to a float representing the number of months (including fractions) in the
span.

Code Result

a_year 3 * .as_months f"%4.2f" “36.00”

50000 .to_duration .as_months f"%4.2f" “0.0190”

Page 162 of 354

[duration] .as_seconds [float]

Routing: TOS

Convert a duration to a float representing the number of seconds (including fractions) in
the span.

Code Result

a_day 11.0 / .as_seconds f"%4.2f" “7854.55”

50000 .to_duration .as_seconds f"%4.2f" “50000.00”

[duration] .as_years [float]

Routing: TOS

Convert a duration to a float representing the number of years (including fractions) in the
span.

Code Result

a_year pi * .as_years f"%6.4" “3.1416”

3.0E9 .to_duration .as_years f"%4.2f" “95.07”

[duration] .days [integer]

Routing: TOS

Extract the number of whole days within the month of the duration's span.

Code Result

a_day 40 * .days 9

50000 .to_duration .days 0

[duration] .hours [integer]

Routing: TOS

Extract the number of whole hours within the day of the duration's span.

Code Result

an_hour 40 * .hours 16

50000 .to_duration .hours 13

Page 163 of 354

[duration] .largest_interval [0..5]

Routing: TOS

Return the index of the largest non-zero interval unit within the span of the duration. This is
zero for years, one for months, two for days, three for hours, four for minutes, and five for
seconds. These index values correspond to the indexes for these intervals in the Duration
class methods “.intervals” and “.labels” (see above).

Note: if the span is less than one second, an index of five is returned for the fractions of
seconds in the span.

Code Result

a_year .largest_interval 0

a_month .largest_interval 1

a_day .largest_interval 2

an_hour .largest_interval 3

a_minute .largest_interval 4

a_second .largest_interval 5

0 .to_duration .largest_interval 5

[duration] .minutes [integer]

Routing: TOS

Extract the number of whole minutes within the hour of the duration's span.

Code Result

an_hour 1- .minutes 59

50000 .to_duration .minutes 53

[duration] .months [integer]

Routing: TOS

Extract the number of whole months within the year of the duration's span.

Code Result

a_month 16 * .months 4

1.0E7 .to_duration .months 3

Page 164 of 354

[duration] .seconds [float]

Routing: TOS

Extract the number of seconds (with fractions) within the minute of the duration's span.

Code Result

pi 20 * .to_duration .seconds 2.8318530717958623

50000 .to_duration .seconds 20.0

[duration] .to_a [array]

Routing: TOS

Convert the duration into an array where the elements represent the years, months, days,
hours, minutes, and seconds of the duration's span. These are all integers except for the
seconds which is a float.

Code Result

a_year 2* 1- .to_a [1 11 30 10 29 5.0]

50000 .to_duration .to_a [0 0 0 13 53 20.0]

pi .to_duration .to_a [0 0 0 0 0 3.141592653589793]

[duration or number or array] .to_duration [duration or nil]

Routing: TOS

This method is a composite of a method and some helpers. Together they implement a
protocol for converting data into Duration instances. If the conversion is unable to proceed,
the value nil is returned instead of a duration.

Code Result

50000 .to_duration Duration instance <50000.0 seconds>

an_hour .to_duration Duration instance <3600.0 seconds>

[50000] .to_duration Duration instance <50000.0 seconds>

[1 2 3 4 5 6] .to_duration Duration instance <37090350.0 seconds>

[1 2 3 4 5 6 7] .to_duration nil

"apple" .to_duration nil

3+4i .to_duration nil

Page 165 of 354

[duration or number or array] .to_duration! [duration]

Routing: TOS

This method is a composite of a method and some helpers. Together they implement a
protocol for converting data into Duration instances. If the conversion is unable to proceed,
an error is raised.

Code Result

50000 .to_duration! Duration instance <50000.0 seconds>

an_hour .to_duration! Duration instance <3600.0 seconds>

[50000] .to_duration! Duration instance <50000.0 seconds>

[1 2 3 4 5 6] .to_duration! Duration instance <37090350.0 seconds>

[1 2 3 4 5 6 7] .to_duration! F40: Cannot convert Array instance to a
Duration instance

"apple" .to_duration! F40: Cannot convert String instance to a
Duration instance

3+4i .to_duration! F40: Cannot convert Complex instance to a
Duration instance

[duration] .to_s [string]

Routing: TOS

The default conversion to string. Mostly for debugging etc.

Code Result

an_hour .to_s “Duration instance <3600.0 seconds>”

[duration] .years [integer]

Routing: TOS

Extract the number of whole years within the year of the duration's span.

Code Result

a_year 3/2 * .years 1

50000 .to_duration .years 0

Page 166 of 354

[duration duration or number] / [duration]

Routing: NOS

This is the division operator for the Duration class.

Code Result

a_year 2 / .to_a [0 6 0 0 0 0.0]

[duration] 1+ [duration]

Routing: TOS

Add one second to the duration. Note: This method does not mutate the original duration.

Code Result

a_minute 1+ Duration instance <61.0 seconds>

[duration] 1- [duration]

Routing: TOS

Subtract one second from the duration. Note: This method does not mutate the original
duration.

Code Result

a_minute 1- Duration instance <59.0 seconds>

[duration] 2* [duration]

Routing: TOS

Double the span of the duration. Note: This method does not mutate the original duration.

Code Result

a_minute 2* Duration instance <120.0 seconds>

[duration] 2+ [duration]

Routing: TOS

Add two seconds to the duration. Note: This method does not mutate the original duration.

Code Result

a_minute 2+ Duration instance <62.0 seconds>

Page 167 of 354

[duration] 2- [duration]

Routing: TOS

Subtract two seconds from the duration. Note: This method does not mutate the original
duration.

Code Result

a_minute 2- Duration instance <58.0 seconds>

[duration] 2/ [duration]

Routing: TOS

Halve the span of the duration. Note: This method does not mutate the original duration.

Code Result

a_minute 2/ Duration instance <30.0 seconds>

[duration] f"a format string" [string]

Routing: NOS

The duration short form formatted conversion to a string. See Duration Formatting above
for more details.

[duration string] format [string]

Routing: NOS

The duration long form formatted conversion to a string. See Duration Formatting above
for more details.

Page 168 of 354

False

Inheritance: False ← Object

False Shared Methods =
&& ^^ not ||

Helper Methods =
false

The class False is the class behind the value false. The value false is used to process a
number of Boolean oriented operations. The class Nil also serves as a surrogate false
value and duplicates the functionality of false.

False Literals

Instances of the class False are available though the Virtual Machine helper method “false”.

Note: Remember that False is the class and false is the value.

Instance Methods

[false object] && [false]

Routing: NOS.

Logical AND for the case where the first operand is false. Always false.

Code Result

false false && false

false true && false

true false && false

true true && true

Page 169 of 354

[false object] ^^ [true or false]

Routing: NOS.

Logical, exclusive OR for the case where the first operand is false. This takes on the value
of the second operand converted to a Boolean value.

Code Result

false false ^^ false

false true ^^ true

true false ^^ true

true true ^^ false

[false object] || [true or false]

Routing: NOS.

Logical, inclusive OR for the case where the first operand is false. This takes on the value
of the second operand converted to a Boolean value.

Code Result

false false || false

false true || true

true false || true

true true || true

Page 170 of 354

Fiber

Inheritance: Fiber ← Object

Fiber Class Methods =
.current .new{{

Fiber Shared Methods =
.alive? .status .step .to_fiber

Help Methods =
.yield yield

A fiber is a light-weight, cooperative routine, or coroutine136. In the cooperative approach,
different routines takes turns running, performing a processing step, and relinquishing or
yielding the processor voluntarily. This contrasts with real time or time sliced systems where
a supervisor program determines when processing needs to switch from one area to
another.

In many regards, fibers are similar to simple procedures. There are however some crucial
differences between the two:

1. A procedure always executes from the beginning. A fiber also begins there too, but
on subsequent processing steps, it continues from the last location. Thus the fiber
retains its execution state even when it finishes a step.

2. A procedure shares the data stack with its caller. A fiber has its own data stack that is
manipulated independently from the caller's data stack.

Normally, fibers cooperate with other fibers. This is normally done by grouping fibers into
either a bundle or a synchronized bundle. Refer to the Bundle class above or the
SyncBundle below for more information on these classes.

Class Methods

[Fiber] .current [a_fiber or nil]

Routing: TOS

This method returns the current thread's current fiber object of nil if the current thread is
not currently executing a fiber. In this way it also acts as a sort of in_a_fiber method.

Code Result

Fiber .current a_fiber or nil

136 Please see: https://en.wikipedia.org/wiki/Coroutine Also see Multi Nexus Programming above.

Page 171 of 354

https://en.wikipedia.org/wiki/Coroutine

[Fiber] .new{{ … }} [a_fiber]

Routing: NOS (since the Procedure Literal is TOS)

This method creates a new fiber based on the embedded procedure literal.

Code Result

Fiber .new{{ 1 1 begin dup .yield over + swap again }}
val#: #fib

The value of the thread
value $fib is a_fiber

Instance Methods

[a_fiber] .alive? [a_boolean]

Routing: TOS

Is the fiber in question ready to execute more steps? True if it is and false if not.

Code Result

a_fiber .alive? true/false

[a_fiber] .status [a_string]

Routing: TOS

This method returns a string that describes the state of the fiber. It can be one of:

• “new” - the fiber has been created, but never stepped.

• “alive” - the fiber is alive and stepping!

• “dead” - the fiber has processed its last step. It processes no more.

Code Result

a_fiber .status “new” or “alive” or “dead”

[a_fiber] .step [unspecified]

Routing: TOS

This method begins another step of fiber processing. This processing continues until the
fiber either calls the yield or .yield methods or the fiber ends.

Note: Sending the .step method to a dead fiber will result in an error.

Code Result

0 8 do $fib .step loop 1, 1, 2, 3, 5, 8, 13, 21

dead_fiber .step F72: The fiber is dead, no further steps can be taken.

Page 172 of 354

[a_fiber] .to_fiber [a_fiber]

[a_procedure] .to_fiber [a_fiber]

[a_bundle] .to_fiber [a_bundle]

Routing: TOS

Convert a fiber or a procedure or a bundle into a fiber object.

Note: A bundle converted to a fiber is still a bundle. That's OK because bundles do most of
the same things that fibers do, so they are duck-type compatible.

Code Result

a_fiber .to_fiber a_fiber

{{ 1 1 begin dup .yield over + swap again }} .to_fiber a_fiber

a_bundle .to_fiber a_bundle

[an_object] .yield []

Routing: VM

This method concludes the current fiber's processing step. In addition, it transmits an
object to the data stack of the calling thread. This allows fibers to serve as data
generators.

Note: If this method is called while not in the context of a fiber, an error occurs.

Code Result

Fiber .new{{ 2 1 begin
 dup .yield over * swap 1+ swap
 again }} val$: $fact

0 10 do $fact .step . cr loop

1
2
6
24
120
720
5040
40320
362880
3628800

$fact .step . 39916800

$fact .step . 479001600

$fact .step . 6227020800

6 .yield F71: May only yield in a fiber.

Page 173 of 354

[] yield []

Routing: VM

This method concludes the current fiber's processing step. Unlike .yield the yield method
does not return data to the calling thread's data stack.

Note: If this method is called while not in the context of a fiber, an error occurs.

Code Result

yield F71: May only yield in a fiber.

Class Stubs

The following method is stubbed out in the Fiber class and not available: .new

Page 174 of 354

Float

Inheritance: Float ← Numeric ← Object

Float Shared Methods =
.to_r .to_r!

Helper Methods =
.to_f .to_f!

Float137 or floating point data are an approximation of the mathematical set of Real
numbers. In fOOrth, this approximation is based on the IEEE-754138 Double Precision data
type. The Float class inherits its functionality from the Numeric class.

Float Literals

Like other numeric literals, float literals are implemented directly by the parser. Any number
with an embedded '.' is considered to be a float. The regular expression that detects
potential float point numbers is:

/\d\.\d/

Some example values follow:

Literal139 Value

7.0 7.0

7.0E3 7000.0

7.0E-3 0.007

-7.0 -7.0

-7.0E3 -7000.0

-7.0E-3 -0.007

137 See http://en.wikipedia.org/wiki/Floating_point
138 See http://en.wikipedia.org/wiki/IEEE_floating_point
139 No spaces are permitted within the literal.

Page 175 of 354

http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/Floating_point

Instance Methods

[object] .to_f [float or nil]

Routing: TOS

Try to convert the object to a float. If this is not possible, return nil. Contrast with .to_f! This
is a helper method of the Object class.

Code Result

"43.1" .to_f 43.1

99 .to_f 99.0

"apple" .to_f nil

[object] .to_f! [float]

Routing: TOS

Try to convert the object to a float. If this is not possible raise an error. Contrast with .to_f
This is a helper method of the Object class.

Code Result

"43.1" .to_f! 43.1

99 .to_f! 99.0

"apple" .to_f! F40: Cannot coerce a String instance to a
Float instance

[float] .to_r [rational or nil]

Routing: TOS

Try to convert the float into a Rational. If this is not possible, return nil. Contrast with .to_r!
This method replaces the default implementation in the Object class to produce better
results for floating point data.

Code Result

2.5 .to_r 5/2

1.3 .to_r 13/10

infinity .to_r nil

Page 176 of 354

[float] .to_r! [rational]

Routing: TOS

Try to convert the float into a Rational. If this is not possible, raise an error. Contrast with
.to_r! This method replaces the default implementation in the Object class to produce
better results for floating point data.

Code Result

2.5 .to_r! 5/2

1.3 .to_r! 13/10

infinity .to_r! F40: Cannot convert a String instance to a
Rational instance

Page 177 of 354

Page 178 of 354

Hash

Inheritance: Hash ← Object

Hash Class Methods =
.new_default .new_default{{

Hash Shared Methods =
.[]! .default{{ .keys .pp .to_a .values
.[]@ .each{{ .length .select{{ .to_h
.default .empty? .map{{ .strmax2 .to_s

Helper Methods =
.new {

Hash140 objects are collections of data indexed by arbitrary values. This value141 can be a
number, a string or any other sort of value. The hash data structure creates an
association142 between the index value and the data value. The fOOrth language system
supports the creation of hash literals and has several methods for putting data into and
pulling data out of hashes.

Hash Literals

Hash literals are supported by the virtual machine method “{” and the locally defined
methods “->” and “}”. The general usage is:

{ (key/value generating code goes here) }

Where the data generation code is code that deposits zero or more key value pairs onto the
stack. The opening “{” creates an empty hash. The “->” method takes a key and a value
from the stack and adds this key/value pair to the hash. When the closing “}” is
encountered, the operation is wrapped up. Here are some illustrations of hash literals in
action:

>{ } .
{ }
>{ 1 2 -> 2 3 -> 3 5 -> 4 7 -> 5 11 -> } .
{ 1 2 -> 2 3 -> 3 5 -> 4 7 -> 5 11 -> }

Some points of interest:

• The first example creates an “empty” hash with zero data elements.

• Hash key and data do NOT need to be the same “type” of data. Mixing is allowed.

• Any statements that generate key/data pairs are permitted. Consider:

140 Please see http://en.wikipedia.org/wiki/Hash_table for more information.
141 Often called a “key”.
142 Hashes are sometimes called associative arrays.

Page 179 of 354

http://en.wikipedia.org/wiki/Hash_table

>{ 0 10 do i i -> loop } .
{ 0 0 -> 1 1 -> 2 2 -> 3 3 -> 4 4 -> 5 5 -> 6 6 -> 7 7 -> 8 8 -> 9 9 -> }
>{ 0 10 do i i dup * -> loop } .
{ 0 0 -> 1 1 -> 2 4 -> 3 9 -> 4 16 -> 5 25 -> 6 36 -> 7 49 -> 8 64 -> 9 81 ->
}

Hash Literal Methods

[] { [hash]

Routing: VM

This method begins the creation of a hash literal value.

Code Result

{ {}

Local Methods:

[hash key value] -> [hash]

Routing: Compiler Context.

This method takes a key and a value and adds it to the hash.

Code Result

{ "a" 1 -> {“a”=>1}

[hash] … } [hash]

Routing: Compiler Context.

This method closes off the context of the hash literal creation.

Code Result

{ "a" 1 -> } {“a”=>1}

Hash Literals in Action

The following shows the action of the code 1 2 { 3 4 -> 5 6 -> } with)show and)debug
active:

>1 2
Tags=[:numeric] Code="vm.push(1); "
Tags=[:numeric] Code="vm.push(2); "

[1 2]
>{
Tags=[:immediate] Code="vm._224(vm); "
 nest_context
 Code="vm.push(Hash.new); "

Page 180 of 354

[1 2 { }]
>>3 4 ->
Tags=[:numeric] Code="vm.push(3); "
Tags=[:numeric] Code="vm.push(4); "
Tags=[:immediate] Code="vm.context[:_315].does.call(vm); "
 Code="vm.add_to_hash; "

[1 2 { 3 4 -> }]
>>5 6 ->
Tags=[:numeric] Code="vm.push(5); "
Tags=[:numeric] Code="vm.push(6); "
Tags=[:immediate] Code="vm.context[:_315].does.call(vm); "
 Code="vm.add_to_hash; "

[1 2 { 3 4 -> 5 6 -> }]
>>}
Tags=[:immediate] Code="vm.context[:_316].does.call(vm); "
 unnest_context
 Code=""

[1 2 { 3 4 -> 5 6 -> }]

Class Methods

[Hash] .new [{}]

Routing: TOS

This method is actually the default implementation inherited from the Object class. It
creates a new, hash object with zero data elements. It is equivalent to the array literal “{ }”.

Code Result

Hash .new { }

{ } { }

[object Hash] .new_default [{}]

Routing: NOS (since the Procedure Literal is TOS)

This method creates an empty hash with the default value set to the specified object.

Code Result

0 Hash .new_default { }

Page 181 of 354

[Hash] .new_default{{ … }} [after]

Routing: NOS

This method creates a new empty hash with the default value set to the value returned by
the embedded block.

Inside that block, self is set to the hash object with the missing entry and x is set to the
missing index value.

Code Result

Hash .new_default{{ 0 }} { }

Instance Methods

[value index hash] .[]! []

Routing: TOS

Store the specified value at the index of the hash.

Note: This method does mutate the hash.

Code Result

"Hello" 5 $myhash .[]! (“Hello” is stored with key 5 in myhash.)

[index hash] .[]@ [value]

Routing: TOS

Retrieve the value stored in the hash at the specified index. If the index does not
correspond to a location within the hash, the value nil is returned instead.

Code Result

1 { 1 2 -> 3 4 -> } .[]@ 2

11 { 1 2 -> 3 4 -> } .[]@ nil

[object hash] .default []

Routing: TOS

This method sets the default value of the hash.

Code Result

{ 0 "a" -> } dup "z" swap .default { 0 “a” → }

Page 182 of 354

[hash] .default{{ … }} []

Routing: NOS (since the Procedure Literal is TOS)

This method sets the default value value of the hash to the value returned by the
embedded block.

Inside that block, self is set to the hash object with the missing entry and x is set to the
missing index value.

Code Result

{ 0 "a" -> } dup swap .default{{ "z" }} { 0 “a” → }

[hash] .each{{ … }} [unspecified]

Routing: NOS (since the Procedure Literal is TOS)

This method is the hash item iterator. It processes each element of the hash in turn, calling
the embedded procedure literal block with the value (v) and index (x) of the current array
item.

For more information on the methods local to the embedded procedure, see the Procedure
class.

Code Result

{ 0 "1" -> 1 "2" -> 2 "3" -> 3 "4" -> }
.each{ v x 1+ * . space }

(Prints out:) 1 22 333 4444

{ 0 "1" -> 1 "2" -> 2 "3" -> 3 "4" -> }
.each{ v . space }

(Prints out:) 1 2 3 4

{ 0 "1" -> 1 "2" -> 2 "3" -> 3 "4" -> }
.each{ x . space }

(Prints out:) 0 1 2 3

[hash] .empty? [boolean]

Routing: TOS

Is this hash devoid of key/value pairs?

Code Result

{ } .empty? true

{ "a" 1 -> } .empty? false

Page 183 of 354

[hash] .keys [array]

Routing: TOS

This method gathers up the keys in a hash and places them in an array.

Note: This method does not mutate the hash.

Code Result

{ 1 2 -> 3 4 -> } .keys [1 3]

[hash] .length [count]

Routing: TOS

How many key/value pairs are in this hash?

Code Result

{ } .length 0

{ "a" 1 -> } .length 1

[hash] .map{{ … }} [hash]

Routing: NOS (since the Procedure Literal is TOS)

Construct a new hash, applying the transformation block to each element. The
.map{{ method processes each element of the hash in turn, calling the embedded
procedure literal block with the value (v) and index (x) of the current item The value
returned by the block is used to populate the new hash. If no value is returned, an error
occurs.

For more information on the methods local to the embedded procedure, see the Procedure
class.

Note: This method does not mutate the original hash.

Code Result

{ 0 2 -> 1 4 -> 2 6 -> 3 8 -> }
.map{{ v 1+ }}

{ 0 3 → 1 5 → 2 7 → 3 9 → }

Page 184 of 354

[hash] .pp []

Routing: TOS

This method is a pretty printer for hashes. The data in the hash is displayed with in
columns for an 80 character wide display and a blank line every 50 lines. The primary use
of this method was in preparing the lists of method names used in this guide. No value is
returned.

Code Result

{ 1 2 -> 4 555 -> } .pp Displays “1=>2 4=>555”

[hash] .select{{ … }} [hash]

Routing: NOS (since the Procedure Literal is TOS)

This method is used to select elements from a hash and place them in a new hash. If the
embedded procedure literal block of the select returns true, the element is copied. If it
returns false, the element is omitted. If no value is returned, an error occurs.

For more information on the methods local to the embedded procedure, see the Procedure
class.

Note: This method does not mutate the original hash.

Code Result

{ 0 2 -> 1 4 -> 2 6 -> 3 8 -> }
.select{{ v 2/ 1 and 0= }}

{ 1 4 → 3 8 → }

[hash] .strmax2 [width]

Routing: TOS

Given an hash, this method determines the width of the largest string representation of the
keys and of the values. This method is a helper method for the .pp pretty print method.

Note: This method does not mutate the original hash.

Code Result

{ 1 2 -> 4 555 -> } .strmax2 1 3

Page 185 of 354

[hash] .to_a [array]

Routing: TOS

Convert the values of the hash into an array.

Note: This method does not mutate the original hash.

Code Result

{ 0 2 -> 1 4 -> 2 6 -> 3 8 -> } .to_a [2 4 6 8]

[hash] .to_h [hash]

Routing: TOS

Convert the hash into a hash. Essentially a no-op.

Code Result

{ 0 2 -> 1 4 -> 2 6 -> 3 8 -> } .to_h { 0 2 -> 1 4 -> 2 6 -> 3 8 -> }

[hash] .to_s [string]

Routing: TOS

Convert the hash to a string representation of that hash.

Code Result

{ 1 2 -> 3 4 -> } .to_s “{ 1 2 -> 3 4 -> }”

[hash] .values [array]

Routing: TOS

This method gathers up the values in a hash and places them in an array.

Note: This method does not mutate the hash.

Code Result

{ 1 2 -> 3 4 -> } .values [2 4]

Page 186 of 354

InStream

Inheritance: InStream ← Object

InStream Class Methods =
.get_all .open .open{{

InStream Shared Methods =
.close .getc .gets ~getc ~gets

InStream Class Stubs =
.new

The InStream class is used to support the reading of information from text files in an
accessible file system.

Class Methods

[file_name InStream] .get_all [[“line 1”, … “line N”]]

Routing: TOS

This method opens the file of the given name for reading, reads the entire file into an array
of lines of text in that array, then closes the file.

Note: If the file being read is large, a large amount of data will be read.

Code Result

"test.txt" InStream .get_all [“Line 1”, “Line 2”, “Line 3”]

"bad.txt" InStream .get_all F50: Unable to open the file bad.txt for reading all.

[file_name InStream] .open [instream]

Routing: TOS

This method opens the file of the given name for reading. It returns an instance of a
InStream object that may be used for reading data from that file. The programmer is
responsible for managing that instance at all times. A typical strategy is to use a local
value to hold this instance.

Note: The programmer is responsible for ensuring that the file object is finally closed.

Code Result

"test.txt" InStream .open val: rf (Creates a local value rf with an InStream
instance.)

"bad.txt" InStream .open F50: Unable to open the file bad.txt for reading.

Page 187 of 354

[file_name InStream] .open{{ … }} [unspecified]

Routing: NOS (since the Procedure Literal is TOS)

This is actually a Virtual Machine method proxy for InStream. This method opens the file of
the given name for reading, it then executes the embedded procedure literal block
(between the {{ and }}) with self set to the opened file for the duration of the block. Finally,
it closes the file.

For more information on the methods local to the embedded procedure, see the Procedure
class.

Notes: The InStream instance is automatically (and always) closed at the end of the code
block.

Code Result

"test.txt" InStream
.open{{ ~gets }}

“Line 1”

Instance Methods

[instream] .close []

Routing: TOS

This method closes of the file associated with the InStream instance.

Code Result

fv .close (Closes the file stored in the value fv. See
.open above)

[instream] .getc [character]

Routing: TOS

This method reads a single character from the file connected to an instance of an
InStream.

Code Result

fv .getc “L”

Page 188 of 354

[instream] .gets [string]

Routing: TOS

This method reads a line of text from the file connected to an instance of an InStream.

Code Result

fv .getc “Line 1”

[] ~getc [character]

Routing: Self

This method reads a character of text from the file connected to an instance of an
InStream that is the current “self” value. This most typically happens in the code block of
an .open{{ … }} method or an exclusive method added to an InStream instance.

Code Result

"test.txt" InStream .open{{ ~getc }} “L”

[] ~gets [string]

Routing: Self

This method reads a line of text from the file connected to an instance of an InStream that
is the current “self” value. This most typically happens in the code block of an .open{{ … }}
method or an exclusive method added to an InStream instance.

Code Result

"test.txt" InStream .open{{ ~gets }} “Line 1”

Class Stubs

The following method is stubbed out in the InStream class and not available: .new

Page 189 of 354

Page 190 of 354

Integer

Inheritance: Integer ← Numeric ← Object

Integer Shared Methods =
.even? .gcd .lcm 2* << and or
.gather .join .odd? 2/ >> com xor

Helper Methods
.to_i .to_i!

Integers143 are numbers that may be represented without any division or fractional
components. In fOOrth, integers behave much more like the abstract integers of
mathematics than those traditionally associated with computers. Unlike common computer
integers144, fOOrth integers have no preset capacity or limit. They are able to expand to
accommodate data as needed without concern for issues such as overflow. It is however
true, that given a finite computer memory sub-system, such expansion cannot go on
without limit, still the limit is a rather ginormous.

Integer Literals

Like other numeric literals, integer literals are implemented directly by the parser. The
parser does not have a specific rule for parsing integer literals. The parser will attempt to
parse a language token as an integer when all other avenues of parsing have failed. Thus,
like FORTH, in fOOrth integer literals are the parse of last resort.

Some examples follow:

Literal145 Value

7 7

-7 -7

445556678789933 445556678789933

0xff 255

0xffffffffff 1099511627775

0xDeadBeef 3735928559

143 See http://en.wikipedia.org/wiki/Integer
144 See http://en.wikipedia.org/wiki/Integer_(computer_science)
145 No spaces are permitted within the literal.

Page 191 of 354

http://en.wikipedia.org/wiki/Integer_(computer_science)
http://en.wikipedia.org/wiki/Integer

Instance Methods

[integer] .even? [boolean]

Routing: TOS

This method returns true if the integer is even and false if it is odd.

Code Result

2 .even? true

3 .even? false

[d0 .. dN N] .gather [[d0 .. dN]]

Routing: TOS

This method gathers up the top N elements of the stack and gathers them into an array.
This is a helper method. See the Array class for more details.

[integer integer] .gcd [integer]

Routing: TOS

This method computes the greatest common divisor of the two integers.

Code Result

50 6 .gcd 2

2345 2890 .gcd 5

[a1 a2 … aN N] .join [after]

Routing: TOS

Join the top N stack elements into an array. See the Array class for more details.

[integer integer] .lcm [integer]

Routing: TOS

This method computes the lowest common denominator of the two integers.

Code Result

50 6 .lcm 150

9 15 .lcm 45

-5 12 .lcm 60

Page 192 of 354

[integer] .odd? [boolean]

Routing: TOS

This method returns true if the integer is odd and false if it is even.

Code Result

2 .odd? false

3 .odd? true

[object] .to_i [integer or nil]

Routing: TOS

Try to convert the object to an integer. If this is not possible, return nil. Contrast with .to_i!
This is a helper method of the Object class.

Code Result

"43.1" .to_i 43

99 .to_i 99

"apple" .to_i nil

[object] .to_i! [integer]

Routing: TOS

Try to convert the object to an integer. If this is not possible raise an error. Contrast with
.to_i! This is a helper method of the Object class.

Code Result

"43.1" .to_i! 43

99 .to_i! 99

"apple" .to_i! Cannot coerce a String instance to an
Integer instance

[integer] 2* [integer]

Routing: TOS

Double the value of the integer.

Code Result

13 2* 26

Page 193 of 354

[integer] 2/ [integer]

Routing: TOS

Halve the value of the integer. Note that integer division is employed with rounding down
towards nagative infinity.

Code Result

7 2/ 3

-7 2/ -4

[integer integer] << [integer]

Routing: NOS

Shift the integer value left by the number of positions indicated. A shift count of zero takes
no action. A negative shift count shifts right by the number of positions indicated.

Note: When shifting right, rounding toward negative infinity is used.

Code Result

4 14 << 65536

4 0 << 4

4 -1 << 2

-10 3 << -80

-10 5 << -320

-10 -3 << -2

-10 -5 << -1

Page 194 of 354

[integer integer] >> [integer]

Routing: NOS

Shift the integer value right by the number of positions indicated. A shift count of zero
takes no action. A negative shift count shifts left by the number of positions indicated.

Note: When shifting right, rounding toward negative infinity is used.

Code Result

4 1 >> 2

4 0 >> 4

4 -1 >> 8

-10 3 >> -2

-10 5 >> -1

-10 -3 >> -80

-10 -5 >> -320

[integer integer] and [integer]

Routing: NOS

Compute the bit-wise and function of the two integer values.

Code Result

15 40 and 8

[integer] com [integer]

Routing: TOS

This method computes the bit-wise complement of the integer value.

Code Result

34 com -35

0 com -1

[integer integer] or [integer]

Routing: NOS

Compute the bit-wise inclusive or function of the two integer values.

Code Result

15 40 or 47

Page 195 of 354

[integer integer] xor [integer]

Routing: NOS

Compute the bit-wise exclusive or function of the two integer values.

Code Result

15 40 xor 39

Page 196 of 354

Mutex

Inheritance: Mutex ← Object

Mutex Class Methods =
.do{{

Mutex Shared Methods =
.do{{ .lock .unlock

The Mutex class is used to support the concept of mutual exclusion146. Mutual exclusion
refers to the requirement of ensuring that no two concurrent processes are in their critical
section at the same time; it is a basic requirement in concurrency control, to prevent race
conditions.

The default implementation of .new is used to create new instances of Mutex as follows:

Mutex .new

An example use of the Mutex is coordinating access to a counter shared by many
threads147:

(a_count test_mutex 100*a_count)
: test_mutex
 0 var: ctr
 Array .new{{
 x .to_s Thread .new{{
 0 100 do
 Mutex .do{{ ctr @ 1+ ctr ! }}
 0.001 .sleep
 loop
 }}
 }} .each{{ v .join }}
 ctr @ ;

Class Methods

[Mutex] .do{{ … }} []

Routing: NOS (since the Procedure Literal is TOS)

This method executes the embedded procedure literal block with an exclusion for all other
code blocks guarded by a shared, system wide mutex instance. See example above.

For more information on the methods local to the embedded procedure, see the Procedure
class.

146 See https://en.wikipedia.org/wiki/Mutual_exclusion
147 This example may be found in mutex.foorth which may be found in the doc/snippets folder.

Page 197 of 354

https://en.wikipedia.org/wiki/Mutual_exclusion

Instance Methods

[mutex] .do{{ … }} []

Routing: NOS (since the Procedure Literal is TOS)

This method executes the embedded procedure literal block with an exclusion for all other
code blocks guarded by the same mutex instance. The above example, rewritten to use a
local mutex instance is shown below:

(a_count test_mutex 100*a_count)
: test_mutex
 0 var: ctr Mutex .new val: mex
 Array .new{{
 x .to_s Thread .new{{
 0 100 do
 mex .do{{ ctr @ 1+ ctr ! }}
 0.001 .sleep
 loop
 }}
 }} .each{{ v .join }}
 ctr @ ;

For more information on the methods local to the embedded procedure, see the Procedure
class.

[mutex] .lock []

Routing: TOS

Gain a lock on a resource, waiting until the mutex is unlocked before proceeding.

Code Result

mex .lock

[mutex] .unlock []

Routing: TOS

Unlock the mutex, giving access to the resource to other threads.

Code Result

mex .unlock

Page 198 of 354

Nil

Inheritance: Nil ← Object

Nil Shared Methods =
&& ^^ nil<> nil= not ||

The value nil of the class Nil is a placeholder for nothing, that is the absence of all data. In
other languages like “C” NULL is a special pointer value with restrictions on its use. In
fOOrth, nil is just another object with a very bad reputation!

Note that in Boolean expressions, nil is treated as an alias for false.

Nil Literals

Instances of the Nil class are available through the Virtual Machine helper method “nil”.

Note: Remember that Nil is the class and nil is the value.

Instance Methods

[nil object] && [false]

Routing: NOS.

Logical AND for the case where the first operand is nil. Always false.

Code Result

nil true && false

[nil object] ^^ [true or false]

Routing: NOS.

Logical, exclusive OR for the case where the first operand is nil. This takes on the value of
the second operand converted to a Boolean value.

Code Result

nil false ^^ false

nil true ^^ true

Page 199 of 354

[nil object] || [true or false]

Routing: NOS.

Logical, inclusive OR for the case where the first operand is nil. This takes on the value of
the second operand converted to a Boolean value.

Code Result

nil false || false

nil true || true

Page 200 of 354

Numeric

Inheritance: Numeric ← Object

Numeric Shared Methods =
* .atanh .ln .sqr 1-
** .c2p .log10 .sqrt 2*
+ .cbrt .log2 .tan 2+
- .ceil .magnitude .tanh 2-
.1/x .conjugate .numerator .to_t 2/
.10** .cos .p2c .to_t! <
.2** .cosh .polar / <=
.abs .cube .r2d 0< <=>
.acos .d2r .rationalize_to 0<= >
.acosh .denominator .real 0<=> >=
.angle .e** .round 0<> mod
.asin .emit .round_to 0= neg
.asinh .floor .sin 0>
.atan .hypot .sinh 0>=
.atan2 .imaginary .sleep 1+

Helper Methods =
.to_n .to_n!

The Numeric class is the abstract base class for numeric data. It is the location for the vast
majority of methods that act on such data. In use, data will be instances of Complex, Float,
Integer (via Bignum and Fixnum), and Rational data.

Special Numeric Values

[] -infinity [float]

Routing: VM

This method pushes the special floating point value -Infinity.

Code Result

-infinity -Infinity

[] dpr [float]

Routing: VM

This method pushes the degrees per radians constant onto the stack. This has a value of
180/pi.

Code Result

dpr 57.29577951308232

Page 201 of 354

[] e [float]

Routing: VM

This method pushes the value e, the base of the natural logarithms, onto the stack.

Code Result

e 2.718281828459045

[] epsilon [float]

Routing: VM

This smallest float such that 1.0 + epsilon <> 1.0. The more generalized case is

n + (n * epsilon) ≠ n

Code Result

epsilon 2.220446049250313e-16

1.0 epsilon + 1.0000000000000002

1.0 epsilon 2/ + 1.0

100.0 dup epsilon * + 100.00000000000003

0.01 dup epsilon * + 0.010000000000000002

[] infinity [float]

Routing: VM

This method pushes the special floating point value Infinity.

Code Result

-infinity Infinity

[] max_float [float]

Routing: VM

This method pushes the value of the largest allowed floating point number, currently this is
1.7976931348623157e+308 on the current test environment.

Code Result

max_float 1.7976931348623157e+308

Page 202 of 354

[] min_float [float]

Routing: VM

This method pushes the value of the smallest, non-zero, floating point number, currently
this is 2.2250738585072014e-308 on the current test environment.

Code Result

min_float 2.2250738585072014e-308

[] nan [float]

Routing: VM

This method pushes the special floating point value Not-A-Number (NaN).

Code Result

nan NaN

[] pi [float]

Routing: VM

This method pushes the famous value pi, the ratio of a circle's circumference to its
diameter, onto the stack.

Code Result

pi 3.141592653589793148

Instance Methods

[numeric numeric] * [numeric]

Routing: NOS

The multiplication operator is implemented by this method.

Code Result

10 3 * 30

22.7 1.5 * 34.05

22.7 3/2 * 34.05

3/2 4/5 * 6/5

2+3i 3+4i * -6+17i

148 In 1897, several attempts were made to legislate the value of pi to a number of incorrectly computed
values. Fortunately, these efforts were unsuccessful.

Page 203 of 354

[numeric numeric] ** [numeric]

Routing: NOS

The exponentiation operator is implemented by this method. Note the the second operand,
the power, is converted to a Float first.

Code Result

2 10 ** 1024

3 4 ** 81

2 1/2 ** 1.4142135623730951

[numeric numeric] + [numeric]

Routing: NOS

The addition operator is implemented by this method.

Code Result

1 1 + 2

1.0 7.2 + 8.2

1/2 1/3 + 5/6

1+2i 1+3i + 2+5i

[numeric numeric] - [numeric]

Routing: NOS

The subtraction operator is implemented by this method.

Code Result

1 1 - 0

1.0 7.2 - -6.2

1/2 1/3 - 1/6

1+2i 1+3i - 0-1i

Page 204 of 354

[numeric] .1/x [numeric]

Routing: TOS

This method computes the value of 1/x for the numeric argument. Note that division by
zero produces an error in most cases except for 0.0 which produces Infinity.

Code Result

2 .1/x 0

2.0 .1/x 0.5

0 .1/x E15: divided by 0

0.0 .1/x Infinity

[numeric] .10** [float]

Routing: TOS

This method computes 10X for the numeric argument.

Code Result

3 .10** 1000.0

1/3 .10** 2.154434690031884

-3 .10** 0.001

[numeric] .2** [float]

Routing: TOS

This method computes 2X for the numeric argument.

Code Result

10 .2** 1024.0

-3 .2** 0.125

1+1i .2** 1.5384778027279442+1.277922552627269
5i

Page 205 of 354

[numeric] .abs [numeric]

Routing: TOS

This method computes the absolute value of the argument number. Note that for complex
numbers, this is the magnitude of the argument.

Code Result

1 .abs 1

1.0 .abs 1.0

1/1 .abs 1/1

-1 .abs 1

1+1i .abs 1.4142135623730951

[numeric] .acos [float]

Routing: TOS

This method computes the arc-cosine (cos(x)-1) of the value. That is it computes the angle
in radians whose cosine is the argument149.

Code Result

1 .acos 0.0

0 .acos 1.5707963267948966

[numeric] .acosh [float]

Routing: TOS

This method computes the arc-hyperbolic-cosine (cosh(x)-1) of the value. That is it
computes the angle in radians whose hyperbolic-cosine is the argument150.

Code Result

1 .acosh 0.0

149 Please see http://en.wikipedia.org/wiki/Inverse_trigonometric_functions for more details on inverse
trigonometric functions.

150 Please see http://en.wikipedia.org/wiki/Inverse_hyperbolic_function for more details on inverse hyperbolic
trigonometric functions.

Page 206 of 354

http://en.wikipedia.org/wiki/Inverse_hyperbolic_function
http://en.wikipedia.org/wiki/Inverse_trigonometric_functions

[numeric] .angle [float]

Routing: TOS

For complex numbers, this method computes the phase angle in radians of the number.
For non complex numbers, this angle is zero for positive values and pi for negative ones.

Code Result

1+1i .angle 0.7853981633974483

1 .angle 0.0

-1 .angle 3.141592653589793

[numeric] .asin [float]

Routing: TOS

This method computes the arc-sine (sin(x)-1) of the value. That is it computes the angle in
radians whose sine is the argument.

Code Result

1 .asin 1.5707963267948966

0 .asin 0.0

[numeric] .asinh [float]

Routing: TOS

This method computes the arc-hyperbolic-sine (sinh(x)-1) of the value. That is it computes
the angle in radians whose hyperbolic-sine is the argument

Code Result

1 .asinh 0.881373587019543

[numeric] .atan [float]

Routing: TOS

This method computes the arc-tangent (tan(x)-1) of the value. That is it computes the angle
in radians whose tangent is the argument.

Code Result

1 .atan 0.7853981633974483

Page 207 of 354

[numeric numeric] .atan2 [float]

Routing: TOS

This is the two argument version of atan (arc-tangent).

For any real number arguments x, y not both equal to zero, atan2(y, x) is the angle in
radians between the positive x-axis of a plane and the point given by the coordinates (x, y)
on it. The angle is positive for counter-clockwise angles (upper half-plane, y > 0), and
negative for clockwise angles (lower half-plane, y < 0)151.

Code Result

[numeric] .atanh [float]

Routing: TOS

This method computes the arc-hyperbolic-tangent (tanh(x) -1) of the value. That is it
computes the angle in radians whose hyperbolic-tangent is the argument

Code Result

0 .atanh 0.0

1 .atanh Infinity

[numeric numeric] .c2p [float float]

Routing: TOS

This method converts a two dimensional Cartesian coordinate to its equivalent Polar
coordinate. On input the arguments are x, y. On output, the results are magnitude, angle
(in radians).

Code Result

1 1 .c2p 1.4142135623730951,
0.7853981633974483

[numeric] .cbrt [float]

Routing: TOS

This method computes the cube root (X1/3) of the value.

Code Result

8 .cbrt 2.0

-8 .cbrt -2.0

151 From http://en.wikipedia.org/wiki/Atan2.

Page 208 of 354

http://en.wikipedia.org/wiki/Atan2

[numeric] .ceil [integer]

Routing: TOS

This method computes the smallest integer that is greater than or equal to the argument.

Code Result

55.5 .ceil 56

-55.5 .ceil 55

[numeric] .conjugate [numeric]

Routing: TOS

This method computes the complex conjugate of the argument. For non-complex data, this
has no effect.

Code Result

2+3i .conjugate 2-3i

42 .conjugate 42

[numeric] .cos [float]

Routing: TOS

This method computes the cosine152 of the argument angle in radians.

Code Result

0 .cos 1.0

pi .cos -1.0

[numeric] .cosh [float]

Routing: TOS

This method computes the hyperbolic-cosine153 of the argument angle in radians.

Code Result

0 .cosh 0.0

152 See http://en.wikipedia.org/wiki/Trigonometric_functions for further information.
153 See http://en.wikipedia.org/wiki/Hyperbolic_function for further information.

Page 209 of 354

http://en.wikipedia.org/wiki/Hyperbolic_function
http://en.wikipedia.org/wiki/Trigonometric_functions

[numeric] .cube [numeric]

Routing: TOS

This method computes the cube (X3) of the number.

Code Result

3 .cube 27

3.0 .cube 27.0

[numeric] .d2r [float]

Routing: TOS

This method converts the argument number from degrees to radians.

Code Result

180 .d2r 3.141592653589793

[numeric] .denominator [integer]

Routing: TOS

This method extracts the denominator from the rational argument. If the argument is a float or
complex, it extracts the denominator of the rationalized equivalent of that number. If the
argument is an integer, the denominator is always one.

Code Result

1/3 .denominator 3

2.5 .denominator 2

1.5+2.25i .denominator 4

7 .denominator 1

[numeric] .e** [float]

Routing: TOS

This method computes the value of e raised to the power of the argument (eX).

Code Result

1 .e** 2.718281828459045

10 .e** 22026.465794806718

Page 210 of 354

[numeric] .emit []

Routing: TOS

This method emits a character with the code of numeric argument.

Code Result

65 .emit (Prints an “A”)

[numeric] .floor [integer]

Routing: TOS

This method computes the largest integer that is less than or equal to the argument.

Code Result

2.3 .floor 2

-2.3 .floor -3

[numeric numeric] .hypot [float]

Routing: TOS

Given two lengths, this method computes the length of the hypotenuse.

Code Result

3 4 .hypot 5.0

[numeric] .imaginary [numeric]

Routing: TOS

This method extracts the imaginary component of a complex number. For non-complex
numbers this is always zero.

Code Result

1+2i .imaginary 2

1-2i .imaginary -2

42 .imaginary 0

Page 211 of 354

[numeric] .ln [float]

Routing: TOS

This method computes the natural logarithm (loge) of the given value.

Code Result

1 .ln 0.0

e .ln 1.0

10 .ln 2.302585092994046

[numeric] .log10 [float]

Routing: TOS

This method computes the base 10 logarithm (log10) of the given value.

Code Result

1 .log10 0.0

e .log10 0.4342944819032518

10 .log10 1.0

[numeric] .log2 [float]

Routing: TOS

This method computes the base 2 logarithm (log2) of the given value.

Code Result

2 .log2 1.0

e .log2 1.4426950408889634

10 .log2 3.321928094887362

[numeric] .magnitude [numeric]

Routing: TOS

This method computes the magnitude of a complex value. For non-complex values, it
computes the absolute value of the argument.

Code Result

3+4i .magnitude 5.0

-3 .magnitude 3

Page 212 of 354

[numeric] .numerator [numeric]

Routing: TOS

This method extracts the numerator from the rational argument. If the argument is a float or
complex, it extracts the numerator of the rationalized equivalent of that number. If the
argument is an integer, the numerator is the same as the number.

Code Result

1/3 .numerator 1

2.5 .numerator 5

1.5+2.25i .numerator 6+9i

7 .numerator 7

[numeric numeric] .p2c [float float]

Routing: TOS

This method converts a two dimensional Polar coordinate to its equivalent Cartesian
coordinate. On input the arguments are magnitude, angle (in radians). On output, the
results are x, y.

Code Result

1 pi .p2c 1.2246063538223773e-16, -1.0

1 0 .p2c 0.0, 1.0

[numeric] .polar [float float]

Routing: TOS

This method converts a complex number to a magnitude and an angle (in radians). For
non-complex data, the result is the absolute value of the number and zero radians for
positive values and pi radians for negative values.

Code Result

1+1i .polar 1.4142135623730951,
0.7853981633974483

5 .polar 5, 0

-5 .polar 5, 3.141592653589793

Page 213 of 354

[numeric] .r2d [float]

Routing: TOS

Convert a angle value from radians to degrees.

Code Result

Pi .r2d 180.0

[error_float numeric] .rationalize_to [rational]

Routing: TOS

Convert a numeric into the simplest rational with an error not greater than the error_float.
See the Rational class for more details.

[numeric] .real [numeric]

Routing: TOS

This method returns the real component of a complex number. For non-complex number, it
simply returns the number unchanged.

Code Result

4+2i .real 4

[numeric] .round [integer]

Routing: TOS

This method rounds the argument number to the nearest integer.

Code Result

4.1 .round 4

4.5 .round 5

4.9 .round 5

-4.1 .round -4

-4.5 .round -5

-4.9 .round -5

Page 214 of 354

[num_digits number] .round_to [float]

Routing: TOS

Round the number to the specified number of digits past the decimal point. Negative digits
round to places before the decimal point.

Note: Complex data are not supported.

Code Result

2 pi .round_to 3.14

-2 12345.666 .round_to 12300

2 3.12345+4i .round_to F40: Cannot coerce a Complex instance to a
Float instance

[numeric] .sin [float]

Routing: TOS

This method computes the sine of the argument angle in radians.

Code Result

0 .sin 0.0

pi 2/ .sin 1.0

[numeric] .sinh [float]

Routing: TOS

This method computes the hyperbolic-sine of the argument angle in radians.

Code Result

0 .sinh 0.0

pi 2/ .sin 2.3012989023072947

[numeric] .sleep []

Routing: TOS

This method will put the current thread to sleep for the specified number of seconds. See
the Thread class for more details.

Page 215 of 354

[numeric] .sqr [numeric]

Routing: TOS

This method computes the square of the argument value.

Code Result

4 .sqr 16

2/3 .sqr 4/9

1+1i .sqr 0+2i

[numeric] .sqrt [float]

Routing: TOS

This method computes the square root of the argument value.

Code Result

16 .sqrt 4.0

4/9 .sqrt 0.6666666666666666

[numeric] .tan [float]

Routing: TOS

This method computes the tangent of the argument angle in radians.

Code Result

0 .tan 0.0

pi 4 / .tan 0.9999999999999999

[numeric] .tanh [float]

Routing: TOS

This method computes the hyperbolic-tangent of the argument angle in radians.

Code Result

0 .tanh 0.0

1.0E6 .tanh 1.0

[numeric] .to_t [time]

Routing: TOS

Convert the number to a time object. This is a helper method for the Time class.

Page 216 of 354

[numeric] .to_t! [time]

Routing: TOS

Convert the number to a time object. This is a helper method for the Time class.

[object] .to_n [numeric]

Routing: TOS

Try to convert the object into the appropriate type of Numeric value. If this is not possible,
return nil instead. Contrast with .to_n! This is a helper method of the Object class.

Code Result

2 .to_n 2

2.0 .to_n 2.0

"2" .to_n 2

"2.0" .to_n 2.0

"1/2" .to_n 1/2

"1+2i" .to_n 1+2i

"apple" .to_n nil

[object] .to_n! [numeric]

Routing: TOS

Try to convert the object into the appropriate type of Numeric value. If this is not possible,
raise an error. Contrast with .to_n This is a helper method of the Object class.

Code Result

2 .to_n! 2

2.0 .to_n! 2.0

"2" .to_n! 2

"2.0" .to_n! 2.0

"1/2" .to_n! 1/2

"1+2i" .to_n! 1+2i

"apple" .to_n! Cannot convert a String instance to a
Numeric instance

Page 217 of 354

[numeric numeric] / [numeric]

Routing: NOS

This method implements the division operator.

Code Result

3 4 / 0

3.0 4 / 0.75

1 0 / E15: divided by 0

1.0 0 / Infinity

2/3 3 / 2/9

[numeric] 0< [boolean]

Routing: TOS

Is this number less than zero?

Code Result

3 0< false

0 0< false

-3 0< true

[numeric] 0<= [boolean]

Routing: TOS

Is this number less than or equal to zero?

Code Result

3 0<= false

0 0<= true

-3 0<= true

Page 218 of 354

[numeric] 0<=> [1, 0, or -1]

Routing: TOS

Perform a “three outcome” comparison of the value with zero.

Code Result

3 0<=> 1

0 0<=> 0

-3 0<=> -1

[numeric] 0<> [boolean]

Routing: TOS

Is the number not equal to zero?

Code Result

3 0<> true

0 0<> false

-3 0<> true

[numeric] 0= [boolean]

Routing: TOS

Is the number equal to zero?

Code Result

3 0= true

0 0= false

-3 0= true

[numeric] 0> [boolean]

Routing: TOS

Is the number greater than zero?

Code Result

3 0= true

0 0= false

-3 0= false

Page 219 of 354

[numeric] 0>= [boolean]

Routing: TOS

Is the number greater than or equal to zero?

Code Result

3 0= true

0 0= true

-3 0= false

[numeric] 1+ [numeric]

Routing: TOS

Add one to the number

Code Result

2 1+ 3

1/3 1+ 4/3

[numeric] 1- [numeric]

Routing: TOS

Subtract ond from the number

Code Result

2 1- 1

1/3 1- -2/3

[numeric] 2* [numeric]

Routing: TOS

Multiply the number by two.

Code Result

2 2* 4

1/3 2* 2/3

Page 220 of 354

[numeric] 2+ [numeric]

Routing: TOS

Add two to the number

Code Result

2 2+ 4

1/3 2+ 7/3

[numeric] 2- [numeric]

Routing: TOS

Subtract two from the number

Code Result

2 2- 0

1/3 2- -5/3

[numeric] 2/ [numeric]

Routing: TOS

Divide the number by two. Note that for integers, rounding toward negative infinity is used.

Code Result

2 2/ 1

1/3 2/ 1/6

3 2/ 1

-3 2/ -2

3.0 2/ 1.5

-3.0 2/ -1.5

[numeric numeric] < [boolean]

Routing: NOS

Is the first number less than the second?

Code Result

3 0 < false

0 0 < false

-3 0 < true

Page 221 of 354

[numeric numeric] <= [boolean]

Routing: NOS

Is the first number less than or equal to the second?

Code Result

3 0 <= false

0 0 <= true

-3 0 <= true

[numeric numeric] <=> [-1, 0, or 1]

Routing: NOS

Perform a “three outcome” comparison of the first value with the second value.

Code Result

3 0 <=> 1

0 0 <=> 0

-3 0 <=> -1

[numeric numeric] > [boolean]

Routing: NOS

Is the first number greater than the second number.

Code Result

3 0 > true

0 0 > false

-3 0 > false

Page 222 of 354

[numeric numeric] >= [boolean]

Routing: NOS

Is the first number greater than or equal to the second number.

Code Result

3 0 >= true

0 0 >= true

-3 0 >= false

[numeric numeric] mod [numeric]

Routing: NOS

Compute the modulus (or remainder) of dividing the first number by the second.

Code Result

5 3 mod 2

5.0 3.0 mod 2.0

7/3 1/4 mod 1/12

20.5 6 mod 2.5

10 0 mod E15: divided by 0

10.0 0.0 mod E15: divided by 0

[numeric] neg [numeric]

Routing: TOS

Compute zero minus the number.

Code Result

5 neg -5

2.3 neg -2.3

1/3 neg -1/3

Page 223 of 354

Page 224 of 354

Object

Inheritance: Object ← nil

Object Shared Methods =
&& .is_class? .to_i! .with{{ max
)methods .name .to_n <> min
. .strlen .to_n! = nil<>
.class .to_duration .to_r ^^ nil=
.clone .to_duration! .to_r! distinct? not
.clone_exclude .to_f .to_s f" ||
.copy .to_f! .to_x format
.init .to_i .to_x! identical?

Object Shared Stubs =
! .append{{ .open{{ 0<> 2* <= and p"
)stubs .create{{ .select{{ 0= 2+ <=> com parse
* .do{{ / 0> 2- > mod parse!
** .each{{ 0< 0>= 2/ >= neg xor
+ .map{{ 0<= 1+ < >> or
- .new{{ 0<=> 1- << @ p!"

The Object class is the root of the class tree. The fOOrth Object class has no parent class.
This is why it is depicted above as being derived from nil. All other classes inherit from the
Object class and gain its methods and functionality.

Instance Methods

[object_a object_b] && [true or false]

Routing: NOS

Logical AND for the case where the first operand is true. This takes on the value of the
second operand converted to a Boolean value.

Code Result

false false && false

false true && false

true false && false

true true && true

Page 225 of 354

[object] . []

Routing: TOS.

Print out the object on the console using the default formatting.

Code Result

42 . (Prints out the answer to life, the universe
and everything.)

[object] .:: method_name … ; []

Routing: VM.

Start defining an exclusive (singleton in Ruby parlance) method on the receiver object.
The form of this definition takes the form:

<an object> .:: <method name> <code goes here> ;

For information on how the name affects the type of method created, see the section
Routing above.

Notes

• Copies and clones of the affected object retain any additional methods added to
that object before it was copied or cloned. See Cloning Data above for more details.

• Not all objects support exclusive methods. If that is the case then an error occurs.

Code Result

Array .new .name .

[3] val$: $vv
$vv .:: .name "Fred" ;
$vv .name .

$vv .copy .name .

(Prints) Array instance

(Prints) Fred

(Prints) Fred

5 .:: foo 10 ; F13: Exclusive methods not allowed for
type: Fixnum

Local Methods:

See Class .: for more details.

Page 226 of 354

[object] .class [class]

Routing: TOS.
Get the class of the receiver object.

Code Result

1/2 .class Rational

"apple" .class String

Nil .class Nil

[object] .clone [object']

Routing: TOS.

Create a clone of receiver object. This clone is accomplished be performing a deep copy
of the object, and all of its instance data and any data referenced by that data. The deep
copy process has loop and cyclic graph detection to avoid going off into an infinite
recursion. This contrasts with the VirtualMachine word “clone” which combines the actions
of “dup .clone”.

See Cloning Data above for more details.

Code Result

@title .clone ": " @name << (By cloning @title, the string is not
mutated.)

[] .clone_exclude [array_of_exclusions]

Routing: TOS

This method is part of the fOOrth implementation of the full clone protocol. This method is
seldom called directly, instead it is called as a result of a call to the clone or .clone
methods.

The purpose of the .clone_exclude method is to specify those data members that are
excluded from the cloning process. For instance variables this is an array of strings with
the names of those variables.

It is expected that sub-classes of the Object class will override this method and return an
exclusion list appropriate for their needs.

Code Definition Example Result

MyClass .: .clone_exclude ["@foo"] ; (The variable @foo will not be cloned.)

Page 227 of 354

[object] .copy [object']

Routing: TOS

Create a copy of receiver object. This copy is accomplished be performing a shallow copy
of the object, and all of its instance data but not any data referenced by that data. This
contrasts with the VirtualMachine word “copy” which combines the actions of “dup .copy”.

See Cloning Data above for more details.

Code Result

@title .clone ": " @name << (By cloning @title, the string is not
mutated.)

[unspecified object] .init [unspecified]

Routing: TOS

The “.init” method is never called directly. Instead, this method is called by the “.new”
method of the Class class. Its purpose is to perform any needed setup on the object being
created. Parameters to the “.new” appear as parameters to the “.init” method. It is
expected that user defined classes will override the “.init” method default in Object which
takes no action.

In a hierarchy of classes, access to earlier versions of the .init method is possible with the
super method (see super, a local method of “.:” in Class and “.::” in Object).

Code Definition Example Result

MyClass .: .init val@: @name ; (Creates an initialization method that
takes an argument as the initial value for
the name. In use it would appear as the
usage example.

Usage Example

"Peter Camilleri" MyClass .new (Creates an instance of the MyClass class
with the @name value set to the string
“Peter Camilleri”)

[object] .is_class? [false]

Routing: TOS

Is this Object a Class? No! Returns false. See the version of this method in Class for a
more positive slant on things.

Code Result

Object .is_class true

42 .is_class false

Page 228 of 354

[object] .name [string]

Routing: TOS

Get the name of the object. For Class objects, this is the name of the class. For other
objects, this is the name of their class followed by “instance”. For Virtual Machine
instances, the name of the VM is also appended.

Code Result

Object .name “Object”

100 .name “Fixnum instance”

vm .name “VirtualMachine instance <Main>”

[object] .strlen [integer]

Routing: TOS

If the object is a string, determine the length of a string, else determine the length of the
string created when the object is converted to a string (see .to_s for further info).

Code Result
"ABCD" .strlen 4
100 .strlen 3
Object .strlen 6

[object] .to_duration [duration]

Routing: TOS

A helper method for the Duration class. See that class for more details.

[object] .to_duration! [duration]

Routing: TOS

A helper method for the Duration class. See that class for more details.

[object] .to_f [float or nil]

Routing: TOS

Try to convert the object to a float. See the Float class for more details.

Page 229 of 354

[object] .to_f! [float]

Routing: TOS

Try to convert the object to a float. See the Float class for more details.

[object] .to_i [integer or nil]

Routing: TOS

Try to convert the object to an integer. See the Integer class for more details.

[object] .to_i! [integer]

Routing: TOS

Try to convert the object to an integer. If this is not possible raise an error. Contrast with
.to_i! See the Integer class for more details.

[object] .to_n [numeric]

Routing: TOS

Try to convert the object into the appropriate type of Numeric value. See the Numeric class
for more details.

[object] .to_n! [numeric]

Routing: TOS

Try to convert the object into the appropriate type of Numeric value. See the Numeric class
for more details.

[object] .to_r [rational or nil]

Routing: TOS

Try to convert the object into a Rational. See the Rational class for more details.

[object] .to_r! [rational]

Routing: TOS

Try to convert the object into a Rational. See the Rational class for more details.

Page 230 of 354

[object] .to_s [string]

Routing: TOS

Convert the object to a string. See the String class for more details.

[object] .to_x [complex or nil]

Routing: TOS

Try to convert the object into a Complex. See the Complex class for more details.

[object] .to_x! [complex]

Routing: TOS

Try to convert the object into a Complex. See the Complex class for more details.

[object] .with{{ … }} [unspecified]

Routing: NOS (since the Procedure Literal is TOS)

This method is used to override the default value of “self” in a embedded procedure literal
block of code. The argument object is used as the “self” for the duration of the block. This
allows access to ~ methods and instance data. It can also be a handy short-form access
to the object. See the section Self for more details.

For more information on the methods local to the embedded procedure, see the
Procedure class.

Code Result

42 .with{ 0 5 do i self + . space loop } (Prints) 42 43 44 45 46

Object .new .with{
 10 var@: @limit
 self val$: $count }

(Creates an instance of the Object class,
adds the instance variable, @limit and
sets the global value $count to it.)

Page 231 of 354

[object_a object_b] <> [boolean]

Routing: NOS

Return true if object_a does not equal object_b, else return false.

Code Result

42 42 <> false

42 43 <> true

"5" 5 <> true

["5"] ["5"] <> false

["5"] ["6"] <> true

[object_a object_b] = [boolean]

Routing: NOS

Return true if object_a is equal to object_b, else return false.

Code Result

42 42 = true

42 43 = false

"5" 5 = false

["5"] ["5"] = true

["5"] ["6"] = false

[object_a object_b] ^^ [true or false]

Routing: NOS.

Logical, exclusive OR for the case where the first operand is true. This takes on the
opposite of the value of the second operand converted to a Boolean value.

Code Result

false false ^^ false

false true ^^ true

true false ^^ true

true true ^^ false

Page 232 of 354

[object_a object_b] distinct? [true or false]

Routing: NOS.

Return true if the objects a and b have distinct identities or values, else return false

Code Result

4 5 distinct? true

4 4 distinct? false

"hi" dup distinct? false

"hi" "ho" distinct? true

"hi" "hi" distinct? true

[object] f"a string” [string]

Routing: NOS

Create a string version of the object using the embedded formatting string. This is a helper
method, see the String and Time classes for more details.

[object string] format [string]

Routing: NOS

Create a string version of the object using the specified formatting string. This is a helper
method, see the String and Time classes for more details.

[object_a object_b] identical? [true or false]

Routing: NOS.

Return true if the objects a and b have identical identities and values, else return false

Code Result

4 5 identical? false

4 4 identical? true

"hi" "ho" identical? false

"hi" "hi" identical? false154

"hi" dup identical? true

"hi" clone identical? false

154 It can be seen that each string literal value has its own identity even when they have the same value.

Page 233 of 354

[object_a object_b] max [either object_a or object_b]

Routing: NOS

Return the larger or object_a or object_b. The object_b parameter is coerced to the same
type as object_b for the comparison only. If the objects are equal in value, then object_b is
returned.

Code Result

4 5 max 5

4 "5" max “5”

4 2 max 4

4 "apple" max Cannot coerce a String instance to an
Integer instance

[object_a object_b] min [either object_a or object_b]

Routing: NOS

Return the smaller or object_a or object_b. The object_b parameter is coerced to the
same type as object_b for the comparison only. If the objects are equal in value, then
object_b is returned.

Code Result

4 5 min 4

4 "5" min 4

4 2 min 2

4 "apple" min Cannot coerce a String instance to an
Integer instance

[object] nil<> [true]

Routing: TOS

Is this object not equal to nil for the case where the object is not equal to nil. Always true,
see Nil for the flip side of this method.

Code Result

nil nil<> false

false nil<> true

0 nil<> true

"" nil<> true

Page 234 of 354

[object] nil= [false]

Routing: TOS

Is this object equal to nil for the case where the object is not equal to nil. Always false, see
Nil for the flip side of this method.

Code Result

nil nil= true

false nil= false

0 nil= false

"" nil= false

[object] not [false]

Routing: TOS

Return the logical opposite for object for the case where the object is true. Always false,
see False and Nil for the flip sides of this method.

Code Result

nil not true

false not true

true not false

0 not false

"" not false

[object_a object_b] || [true]

Routing: NOS.

Logical, inclusive OR for the case where the first operand is true. This is true.

Note: Other parts of this method are implemented in the Nil and False classes.

Code Result

false false && false

false true && true

true false && true

true true && true

Page 235 of 354

Commands

[object])methods []

Routing: TOS.

Display a formatted listing of the methods defined to the given object. This method is very
similar to the)methods method defined in Class, except for the labeling of exclusive
methods.

>[3] val$: $vv

>$vv .:: .name "Fred" ;

>$vv .name .
Fred
>$vv)methods
Exclusive Methods =
.name

Array Shared Methods =
! .+midlr .-midlr .left .midlr .right <<
+ .+right .-right .length .min .shuffle @
.+left .-left .[]! .max .pp .sort
.+mid .-mid .[]@ .mid .reverse .strmax

Page 236 of 354

OutStream

Inheritance: OutStream ← Object

OutStream Class Methods =
.append .append_all .append{{ .create .create{{ .put_all

OutStream Shared Methods =
. .cr .space ~ ~cr ~space
.close .emit .spaces ~" ~emit ~spaces

OutStream Class Stubs =
.new

The OutStream class is used to support the writing of information to files in an accessible
file system.

Class Methods

[file_name OutStream] .append [outstream]

Routing: TOS

This method opens the file of the given name for appending. It returns an OutStream
instance that may be used for writing data to that file. If the file in question does not exist,
it is created. The programmer is responsible for managing that instance at all times. A
typical strategy is to use a local value to hold that instance.

Note: The programmer is also responsible for ensuring that the file object is finally closed
or data may be lost.

Code Result

"test.txt" OutStream .append val: wf (Creates value wf with an OutStream
instance.

[string_array file_name OutStream] .append_all []

Routing: TOS

This method appends the contents of the string array to the file of the given name. If the
file in question does not exist, it is created.

Code Result

["A" "B" "C"]
"test.txt" OutStream .append_all

Appends the lines “A”, “B”, and “C” to the
file.

Page 237 of 354

[file_name OutStream] .append{{ … }} [unspecified]

Routing: NOS (since the Procedure Literal is TOS)

This is actually a method proxy for OutStream. This method opens the file of the given
name for appending, it then executes the embedded procedure literal block (between
{{ and }}) with self set to the opened file for the duration of the block. Finally it closes the
file.

For more information on the methods local to the embedded procedure, see the Procedure
class.

Code Result

"test.txt" OutStream
.append{{ ~"Hello" ~cr }}

(Appends Hello to the file.)

[file_name OutStream] .create [outstream]

Routing: TOS

This method create a file of the given name for output. It returns an OutStream instance
that may be used for writing data to that file. If the file in question exists, it is replaced. The
programmer is responsible for managing that instance at all times. A typical strategy is to
use a local value to hold that instance.

Note: The programmer is also responsible for ensuring that the file object is finally closed
or data may be lost.

Code Result

"test.txt" OutStream .create val: wf (Creates a local value wf with an
OutStream instance.

[file_name OutStream] .create{{ … }} [unspecified]

Routing: NOS (since the Procedure Literal is TOS)

This is actually a method proxy for OutStream. This method creates a file of the given
name for appending (if the file in question exists, it is replaced), it then executes the
embedded procedure literal block (between {{ and }}) with self set to the opened file for
the duration of the block. Finally it closes the file.

For more information on the methods local to the embedded procedure, see the Procedure
class.

Code Result

"test.txt" OutStream
.create{{ ~"Hello" ~cr }}

(Create file with Hello.)

Page 238 of 354

[string_array file_name OutStream] .put_all []

Routing: TOS

This method writes the contents of the string array to the file of the given name. If the file
in question exists, it is replaced.

Code Result

["A" "B" "C"]
"test.txt" OutStream .append_all

Writes the lines “A”, “B”, and “C” to the
file.

Instance Methods

[object outstream] . []

Routing: TOS

Print out the object to the output stream using the default formatting.

Code Result

42 wf . (Writes “42” to the output)

[outstream] .close []

Routing: TOS

Close the output stream object. After this, the file will not accept further data.

Code Result

wf .close (Close the file.)

"Hello" wf . IOError detected: closed stream

[outstream] .cr []

Routing: TOS

Add a new-line character to the output stream.

Code Result

wf .cr (Adds a new-line character to the output)

Page 239 of 354

[number outstream] .emit [after]

Routing: TOS

Emits the number as a character to the output stream.

Code Result

65 wf .emit (Adds a letter “A” to the output)

[outstream] .space []

Routing: TOS

Adds a space to the output stream.

Code Result

wf .space (Adds a space to the output)

[count outstream] .spaces []

Routing: TOS

Adds the specified number of spaces to the output stream.

Code Result

5 wf .spaces (Adds five spaces to the output)

[object] ~ []

Routing: Self

Print out the object to the output stream using the default formatting.

Code Result

"test.txt" OutStream
.create{{ 42 ~ }}

(Writes “42” to the output)

[] ~" … " []

Routing: Self

Print out the embedded string to the output stream.

Code Result

"test.txt" OutStream
.create{{ ~"Hello" }}

(Writes “Hello” to the output)

Page 240 of 354

[] ~cr []

Routing: Self

Add a new-line character to the output stream.

Code Result

"test.txt" OutStream
.create{{ ~cr }}

(Adds a new-line character to the output)

[number] ~emit []

Routing: Self

Emits the number as a character to the output stream.

Code Result

"test.txt" OutStream
.create{{ 65 ~emit }}

(Writes “A” to the output)

[] ~space []

Routing: Self

Adds a space to the output stream.

Code Result

"test.txt" OutStream
.create{{ ~space }}

(Adds a space to the output)

[count] ~spaces []

Routing: Self

Adds the specified number of spaces to the output stream.

Code Result

"test.txt" OutStream
.create{{ 5 ~spaces }}

(Adds five spaces to the output)

Class Stubs

The following method is stubbed out as it is not supported by the OutStream class.

.new

Page 241 of 354

Page 242 of 354

Procedure

Inheritance: Procedure ← Object

Procedure Shared Methods =
.call .call_vx .call_x .start_named .to_fiber
.call_v .call_with .start .to_bundle .to_sync_bundle

Helper Methods =
{{

The procedure class is used to represent anonymous methods, not tied to either the virtual
machine or any object. They are objects in and of themselves and can be passed as
arguments to methods or returned as values from methods.

Procedure Literals

Procedure literals are supported by the virtual machine method “{{“ and a locally defined
method “}}”. The general usage is:

{{ (procedure body) }}

To be clear on the semantics involved: execution of a procedure literal pushes an instance
of a procedure object onto the stack.

A valid management strategy is to place these procedures into values. For example:

{{ dup * }} var$: $proc

Procedure Literal Methods

[] {{ []

Routing: VM

This method opens the definition of a procedure literal. After the opening {{, the code that
makes up the body of the procedure should be found.

Code Result

4 {{ dup + }} .call 8

Local Methods:

Page 243 of 354

[] v [value or nil]

Routing: Compiler Context.

In those contexts with a defined value, this method retrieves that value. When no such
value exists, nil is returned.

Code Result

[1 2 3] .map{{ v dup * }} [1 4 9]

{{ v }} .call nil

[value] val: local_name []

Routing: Compiler Context.

This method defines a local value in the current procedure.

See Data Storage in fOOrth, above, for more details on values and variables.

Code Result

10 val: limit (Creates a value named limit set to 10)

[value] var: local_name []

Routing: Compiler Context.

This method defines a local variable in the current procedure.

See Data Storage in fOOrth, above, for more details on values and variables.

Code Result

10 var: limit (Creates a variable named limit set to 10)

[] x [index or nil]

Routing: Compiler Context.

In those contexts with a defined index, this method retrieves that index. When no such
value exists, nil is returned.

Code Result

[1 2 3] .map{{ x dup * }} [0 1 4]

{{ x }} .call nil

[] … }} [procedure]

Routing: Compiler Context.

This method closes off the procedure literal context and delivers the resulting procedure
object to the stack.

Code Result

{{ dup + }} .name “Procedure instance”

Page 244 of 354

Instance Methods

[unspecified procedure] .call [unspecified]

Routing: TOS

Call the code in the procedure. The current self value is used as the self value of the
procedure.

Code Result

3 $proc (see above) .call 6

[unspecified v procedure] .call_v [unspecified]

Routing: TOS

Call the code in the procedure. The current self value is used as the self value of the
procedure. In addition, a value (shown as “v” above) is passed into the the procedure and
is accessible as via the v method.

Code Result

4 {{ v dup + }} .call_v 8

[unspecified v x procedure] .call_vx [unspecified]

Routing: TOS

Call the code in the procedure. The current self value is used as the self value of the
procedure. In addition, two values (shown as “v” and “x” above) are passed into the the
procedure and is accessible as via the v and x methods.

Code Result

5 4 {{ v x 2dup + }} .call_vx 5 4 9

[unspecified owner procedure] .call_with [unspecified]

Routing: TOS

Call the code in the procedure with the self value of that procedure set to the owner object.

Code Result

4 {{ self dup + }} .call_with 8

Page 245 of 354

[unspecified v x procedure] .call_x [unspecified]

Routing: TOS

Call the code in the procedure. The current self value is used as the self value of the
procedure. In addition, a value (shown as “x” above) is passed into the the procedure and
is accessible as via the x method.

Code Result

4 {{ x dup + }} .call_x 8

[unspecified procedure] .start [unspecified thread]

Routing: TOS

Start the procedure object in its own thread. Any additional data on the stack is copied to
the stack of the new virtual machine created with the new thread instance.

Note: The caller is responsible for removing or otherwise dealing with the additional data.

Code Result

3 {{ $proc .call . }} .start #<Thread:0xXXXXXXX> (Prints out 6)

[unspecified string procedure] .start_named [unspecified thread]

Routing: TOS

Start the procedure object in its own named thread. Any additional data on the stack is
copied to the stack of the new virtual machine created with the new thread instance.

Note: The caller is responsible for removing or otherwise dealing with the additional data.
The thread name however is removed by the method.

Code Result

"Fred" {{ vm .vm_name . }} .start #<Thread:0xXXXXXXX> (Prints out Fred)

[before] .to_bundle [after]

Routing: TOS

Convert an procedure to a bundle of one fiber. This is a helper method for the Bundle
class.

[before] .to_fiber [after]

Routing: TOS

Convert an procedure to a fiber. This is a helper method for the Fiber class.

Page 246 of 354

[before] .to_sync_bundle [after]

Routing: TOS

Convert an procedure to a synchronized bundle of one fiber. This is a helper method for
the SyncBundle class.

Page 247 of 354

Page 248 of 354

Queue

Inheritance: Queue ← Object

Queue Shared Methods =
.clear .empty? .length .pend .pop .push

The queue class implements a data “pipeline” which permits data objects to be inserted into
the queue and retrieved from the queue in the order they were inserted. Queues are
especially useful in buffering data for use by a producer thread to a consumer thread. If the
queue is required for use within a single thread, consider using arrays instead as this will
have lower overhead than the dedicated Queue class. See the section Data Collections in
fOOrth – Moving Data for more information on using arrays in this manner.

Queue objects are created using the default implementation of the .new method in the
Object class.

Instance Methods

[queue] .clear []

Routing: TOS

This method removes the data elements from the queue.

Code Result

@q .clear (The queue is cleared.)

[queue] .empty? [boolean]

Routing: TOS

Is this queue empty?

Code Result

@q .empty? true or false

[queue] .length [count]

Routing: TOS

How many data elements reside in the queue?

Code Result

@q .length Count

Page 249 of 354

[queue] .pend [object]

Routing: TOS

Wait for a data element in the queue. This method is intended for use by a “consumer”
thread and enables it to wait for data to process from a “producer” thread.

Warning: If this operation creates a deadlock this may result in a fatal error or a program
lock-up.

Code Result

@q .pend object

[queue] .pop [object]

Routing: TOS

Get a data element from the queue.

Note: If the queue is empty when this method is invoked, an error is raised.

Code Result

@q .pop object

@q .pop F31: Queue Underflow: .pop

[object queue] .push []

Routing: TOS

Add a data element to the queue.

Code Result

42 @q .push (The data 42 is added to the queue)

Page 250 of 354

Rational

Inheritance: Rational ← Numeric ← Object

Rational Shared Methods =
.split

Helper Methods =
.to_r .to_r! rational .rationalize_to

Rational numbers155 are those numbers that may be represented as a/b where a and b are
both integers. Since rational numbers are implemented with fOOrth integers, they are not
subject to (most) sizing restrictions and can thus represent numbers large and small with no
loss of precision. Rational numbers inherit most of their methods from the Numeric class.

Rational Literals

Rational literals are supported directly by the compiler. Any number with an embedded '/' is
considered to be a rational number. The regular expression detecting potential rational
numbers is:

/\d\/\d/

 Some example values follow:

Literal156 Value157

1/2 1/2

1.2/3 2/5

Instance Methods

[rational] .split [numerator denominator]

Routing: TOS.

Split a rational number into its two component parts.

Code Result

1/2 .split 1 2

3/4 .split 3 4

155 See http://en.wikipedia.org/wiki/Rational_number
156 No spaces are permitted within the literal.
157 The numerator may be an integer or a float, the denominator must be an integer. See the respective

sections for more details on those types of literals.

Page 251 of 354

http://en.wikipedia.org/wiki/Rational_number

[object] .to_r [rational or nil]

Routing: TOS

Try to convert the object into a Rational. If this is not possible, return nil. Contrast with
.to_r! This is a helper method of the Object class.

Code Result

2 .to_r 2/1

2.5 .to_r 5/2

"2.5" .to_r 5/2

"5/2" .to_r 5/2

"apple" .to_r nil

[object] .to_r! [rational]

Routing: TOS

Try to convert the object into a Rational. If this is not possible, raise an error. Contrast
with .to_r! This is a helper method of the Object class.

Code Result

2 .to_r! 2/1

2.5 .to_r! 5/2

"2.5" .to_r! 5/2

"5/2" .to_r! 5/2

"apple" .to_r! F40: Cannot convert a String instance
to a Rational instance

Page 252 of 354

[numerator denominator] rational [rational]

Routing: VM

This is a helper method of the Virtual Machine class. Given a numerator and denominator,
create a rational number. This method is quite flexible in accepting a wide variety of
numeric input. If, for some reason, the conversion cannot be performed, nil is returned.

Code Result

3 4 rational 3/4

3.5 4 rational 7/8

4 3.5 rational 8/7

1+2i 3 rational 1/3+2/3i

3.1 4 rational 31/40

"apple" 3 rational nil

[numerator denominator] rational! [rational]

Routing: VM

This is a helper method of the Virtual Machine class. Given a numerator and denominator,
create a rational number. This method is quite flexible in accepting a wide variety of
numeric input. If, for some reason, the conversion cannot be performed, an error occurs.

Code Result

3 4 rational! 3/4

3.5 4 rational! 7/8

4 3.5 rational! 8/7

1+2i 3 rational! 1/3+2/3i

3.1 4 rational! 31/40

"apple" 3 rational! F40: Cannot coerce a String instance,
Fixnum instance to a Rational

Page 253 of 354

[error_float numeric] .rationalize_to [rational]

Routing: TOS

Convert a numeric into the simplest rational with an error not greater than the error_float. If
this is not possible, an error is generated.

This is a helper method of the Numeric class.

Code Result

0.01 pi .rationalize_to 22/7

0.001 pi .rationalize_to 201/64

0.01 1234/55 .rationalize_to 157/7

0.001 1234/55 .rationalize_to 875/39

0.01 1+5i .rationalize_to F20: A Complex instance does not
understand .rationalize_to (:_156).

Page 254 of 354

Stack {Deprecated}

Inheritance: Stack ← Object

Stack Shared Methods =
.clear .empty? .length .peek .pop .push

The stack class implements a data “well” which permits data objects to be inserted into the
stack and retrieved in the reverse of the order they were inserted. Stacks are not thread
safe and should not be used to communicate between threads.

Stack objects are created using the default implementation of the .new method in the
Object class.

Note: The Stack class has been deprecated. All of its functionality has been subsumed by
the deque methods of the Array class. See the section Data Collections in fOOrth – Moving
Data for more information on using arrays in this manner.

Instance Methods

[stack] .clear []

Routing: TOS

Clear out the data elements of the stack.

Code Result

@s .clear (The stack is cleared)

[stack] .empty? [boolean]

Routing: TOS

description

Code Result

@s .empty? true or false

[stack] .length [count]

Routing: TOS

How many data elements are in this stack?

Code Result

@s .length count

Page 255 of 354

[stack] .peek [object]

Routing: TOS

Peek at the top-of-stack data element without removing it. Note that if there is no element
to peek at, an error is thrown.

Code Result

@s .peek object

@s .peek F31: Stack Underflow: .peek

[stack] .pop [object]

Routing: TOS

Get the top-of-stack data element. Note that if there is no element to get, an error is
thrown.

Code Result

@s .pop object

@s .pop F31: Stack Underflow: .pop

[object stack] .push []

Routing: TOS

Push a data element onto the stack

Code Result

42 @s .push (Push 42 onto the stack)

Page 256 of 354

String

Inheritance: String ← Object

String Shared Methods =
* .-mid .emit .mid .rjust .to_s* >=
+ .-midlr .left .mid? .rstrip .to_t p"
." .-right .left? .midlr .shell .to_t! parse
.+left .accept .length .mutable? .shell_out .to_upper
.+mid .call .lines .posn .split <
.+midlr .cjust .ljust .reverse .strip <=
.+right .contains? .load .right .throw <=>
.-left .each{{ .lstrip .right? .to_lower >

Helper Methods =
.to_s " format format"

The String class provides a wide range of character and string manipulating capabilities.

String Literals

String literals are directly supported by the compiler. Any method with a " character in it
contains an embedded string literal. See String Literals in The Syntax and Style of fOOrth
above. The most basic string literal uses a virtual machine macro ", but all methods with
embedded strings work in a similar manner. It is illustrated below.

"string contents go here"

Within the string literal, characters usually represent themselves, but there are exceptions
to this called escape sequences. Escape sequences allow the string literal to contain
characters that do not fit the normal rules. These are shown below:

Escape Sequence Interpretation

\" A single " character

\\ A single \ character

\158 The string is continued on next
line.

\n A newline character.

\xFF159 An 8 bit character value.

\uFFFF160 A 16 bit character value.

158 This is a backslash character followed by the end-of-line character(s).
159 The FF represents a two digit hexadecimal value.
160 The FFFF represents a four digit hexadecimal value.

Page 257 of 354

Embedded String Literals

Any method ending with a double quote mark (") will contain an embedded string literal. In
effect the string value contained therein becomes an argument of the method that contains
it.

It is important to understand that in methods with embedded strings, that string is pushed
onto the stack before the method is invoked. Thus the top-of-stack will always be that string
literal.

Multi-line String Literals

In fOOrth, string literals can span multiple lines by use of the backslash (\) character. In
order for this to work, the backslash character needs to be the last character on the line.
The string literal then picks up on the next line at the first non-blank character. For example:

>)show

[]
>"4567\

[]
>" 666"

["4567666"]

Note first how leading spaces on the continuation line are removed. Also note how a " is
added to the prompt to remind the user that a string is in the process of being entered.

Lazy String Literals

A special case exists where a string is started on a line, and neither terminated with a
closing double quote mark or a line extension mark, backslash. In this case, the fOOrth
language performs a lazy string termination, closing the string and removing any trailing
blank characters. This is shown below:

>"Test

>.
Test
>)"ls
Gemfile demo.rb fOOrth.reek license.txt rdoc t.txt
Gemfile.lock docs integration pkg reek.txt test.foorth
README.md fOOrth.gemspec lib rakefile.rb sire.rb tests

Format Strings

The string formatting facility is a direct transplant of the Ruby mechanisms for the same 161.
A format string is a string with optional text and zero or more format sequences. The data

161 The documentation for this feature is largely taken from the Ruby1.9.3-p448 Core API Reference.

Page 258 of 354

being formatted may be in one of two forms. Either a discrete object or an array162 of
objects may be formatted, however, a lone object may only be used if the formatting string
contains no more than one format sequence. The output of the process is a string
containing the formatted data. The structure of a format sequence is shown below with
elements in brackets representing optional components.

%[flags][width][.precision]type

The type parameter is a single character that describes the data being formatted. There are
three major groups of types: Integer, Float, and Other.

Integer Format Types

Type Format Description

b
Convert argument as a binary number. Negative numbers will be displayed as a
two's complement prefixed with '..1'.

B
Equivalent to 'b', but uses an uppercase 0B for prefix if the alternative format
indicated by # is active.

d Convert argument as a decimal number.

i Identical to 'd'.

o
Convert argument as an octal number. Negative numbers will be displayed as a
two's complement prefixed with '..7'.

u Identical to 'd'.

x
Convert argument as a hexadecimal number. Negative numbers will be
displayed as a two's complement prefixed with '..f' (representing an infinite string
of leading 'ff's).

X Equivalent to 'x', but uses uppercase letters.

Float Format Types

Type Format Description

e
Convert floating point argument into exponential notation with one digit before
the decimal point as [-]d.dddddde[+-]dd. The precision specifies the number of
digits after the decimal point (defaulting to six).

E Equivalent to 'e', but uses an uppercase E to indicate the exponent.

f
Convert floating point argument as [-]ddd.dddddd, where the precision specifies
the number of digits after the decimal point.

g
Convert a floating point number using exponential form if the exponent is less
than -4 or greater than or equal to the precision, or in dd.dddd form otherwise.
The precision specifies the number of significant digits.

162 Ruby supports formatting data from hashes, but fOOrth does not.

Page 259 of 354

Type Format Description

G Equivalent to 'g', but use an uppercase 'E' in exponent form.

a
Convert floating point argument as [-]0xh.hhhhp[+-]dd, which is consisted from
optional sign, "0x", fraction part as hexadecimal, "p", and exponential part as
decimal.

A Equivalent to 'a', but use uppercase 'X' and 'P'.

Other Format Types

Type Format Description

c
Argument is the numeric code for a single character or a single character string
itself.

p Convert the argument to a string using the Ruby argument.inspect.

s
Argument is a string to be substituted. If the format sequence contains a
precision, at most that many characters will be copied.

%
A percent sign itself will be displayed. No argument taken. That is %% displays
as a single % sign.

Formatting Flags

The flags are zero or more optional characters that modify how the formatting is done.
Flags tend to be specific to certain types.

Flag Applies to: Description

space Integer or Float
Leave a space at the start of non-negative numbers.
For 'o', 'x', 'X', 'b' and 'B', use a minus sign with absolute value
for negative values.

(digit)$ All
Specifies the absolute argument number for this field.
Absolute and relative argument numbers cannot be mixed in a
format string.

BboxX aAeEfgG

Use an alternative format. For the conversions 'o', increase the
precision until the first digit will be '0' if it is not formatted as
complements. For the conversions 'x', 'X', 'b' and 'B' on non-
zero, prefix the result with ''0x'', ''0X'', ''0b'' and ''0B'',
respectively. For 'a', 'A', 'e', 'E', 'f', 'g', and 'G', force a decimal
point to be added, even if no digits follow. For 'g' and 'G', do
not remove trailing zeros.

+ Integer or Float
Add a leading plus sign to non-negative numbers. For 'o', 'x',
'X', 'b' and 'B', use a minus sign with absolute value for
negative values.

- All Left-justify the result of this conversion.

Page 260 of 354

Flag Applies to: Description

0 Integer or Float
Pad with zeros, not spaces. For 'o', 'x', 'X', 'b' and 'B', radix-1 is
used for negative numbers formatted as complements.

* All
Use the next argument as the field width. If negative, left-justify
the result. If the asterisk is followed by a number and a dollar
sign, use the indicated argument as the width.

The width is an optional numeric value that specifies the minimum size of the formatting
field. Finally the optional precision specification is used to specify the number of digits past
the decimal point for floating point data.

Formatting Examples

The following illustrates a very few of the possible formatting options:

Code Result

1234 f"%10d" " 1234"

1234 f"%-10d" "1234 "

1234 f"%010d" "0000001234"

1234 f"%x" "4d2"

1234 f"%x" "4D2"

1234 f"%#x" "0x4d2"

1234 f"%#X" "0X4D2"

12.34 f"%f" "12.340000"

12.34 f"%.2f" "12.34"

12.34 f"%6.2f" " 12.34"

12.34e6 f"%g" "1.234e+07"

12.34e6 f"%#g" "1.23400e+07"

"Hello World" f"%s" "Hello World"

"Hello World" f"%15s" " Hello World"

"Hello World" f"%15.5s" " Hello"

[5 100] f"%*d" " 100"

[6 2 12.34] f"%*.*f" " 12.34"

100 f"% 4d%%" " 100%"

-100 f"% 4d%%" "-100%"

Page 261 of 354

Parse Strings

The string parsing facility is a direct transplant of the Ruby “ruby_sscanf” gem. A parse
string is a string with literal text and parsing sequences. The data being parsed is a string
with data. The output of the process is an array containing the extracted data. The parse
string may contain zero or more literal elements that represent text to be skipped and one
or more parse sequences. Processing continues through each element of the parse string
until the end of the string is reached or a failure to parse is encountered.

The literal specifiers are used to skip over non-data text in the string. The available values
are listed below:

Literal Description

A space Skips or zero or more spaces

%% Skips over zero or more spaces and a single “%” sign.

Other except a “%” Skips over zero or more spaces and the specified text.

The possible structures of a parse sequence are shown below with fields in brackets
representing optional components.

%[omit][max_width]type
%[omit][[min_width,]max_width]set

The type/set parameter describes the data being parsed.

Type Format Description

a,e,f,g
A,E,F,G

Scan for an (optionally signed) floating point or scientific notation number.

b
Scan for an (optionally signed) binary number with an optional leading '0b' or
'0B' prefix.

c
Grab the next character. If a positive width is specified, grab width characters.
For a negative width, grab characters to the position from the end of the input.
For example a width of -1 will grab all of the remaining input data.

d Scan for an (optionally signed) decimal number.

i
Scan for an (optionally signed) integer. If the number begins with '0x' or '0X',
process hexadecimal; with '0b' or '0B', process binary, if '0', '0o', or '0O',
process octal, else process decimal.

j
Scan for an (optionally signed) complex number in the form
[+-]?float[+-]float[ij]

o
Scan for an (optionally signed) octal number with an optional leading '0', '0o'
or '0O' prefix.

Page 262 of 354

Type Format Description

q
Scan for a quoted string. That is a string enclosed by either single quotes '...' or
double quotes "...".

r
Scan for an (optionally signed) rational number in the form
[+-]?decimal/decimal[r]?

s Scan for a space terminated string.

u Scan for a (optionally “+” signed) decimal number.

x,X
Scan for an (optionally signed) hexadecimal number with an optional leading
'0x' or '0X' prefix.

[] Scan for a contiguous string of characters in the set [chars].

[^] Scan for a contiguous string of characters not in the set [^chars]

The set and unset options require further explanation163 regarding the specification of which
characters may appear.

• Most characters appear as themselves.
• Exceptions to the above are “^”, “\”, “]”, and “-”. These must be preceded by a “\”, so

they need to appear as “\^”, “\\”, “\]”, and “\-”
• Ranges of characters may also be used. For example, “a-z” matches “a” through “z”.

The max_width parameter field is an unsigned integer value that specifies the maximum
number of characters to be processed by that parsing sequence. The optional min_width
parameter is the minimum number of characters needed to satisfy the set format.
The omit flag (“*”) is used to indicate that the parsed data is to be omitted from the result.

Parsing Examples

The following illustrates a very few of the possible parsing options:

Code Result

"12 34 56" p"%d%d%d" [12 34 56]

"12 34 56" p"%d %d %d" [12 34 56]

"23% 47.2" p"%d%% %f" [23 47.2]

"W: 3 H: 6" p" %*2c%d %*2c%d" [3 6]

"W: 3 H: 6" p" W:%d H:%d" [3 6]

"W: 3 L: 6" p" W:%d H:%d" [3]164

"12 34 56 78" p"%d%d" [12 34]165

163 Not the least of which is the fact that the Ruby 'scanf' is buggy and these specifiers are most unreliable.
164 Note that the value 6 is absent since the “H:” literal was not matched.
165 Note that only the first two values are parsed because the parse string only specified two values.

Page 263 of 354

Instance Methods

[string count] * [string]

Routing: NOS

Create a string with the original string repeated count times

Note: The original string is not mutated by this operation.

Code Result

"*" 10 * "**********"

"Knock " 3 * "Knock Knock Knock "

[string object] + [string]

Routing: NOS

Create a new string that is the concatenation of the original string and the object,
converted to a string if needed.

Note: The original string is not mutated by this operation.

Code Result

"Hello " "World" + "Hello World"

"Hello " 42 + "Hello 42"

[] ."a string" []

Routing: TOS

Print the embedded string.

Code Result

."Hello World" (Prints Hello World)

[width object string] .+left [string]

Routing: TOS

Replace width characters on the left part of the string with the object, converted to a string
if needed.

Note: The original string is not mutated by this operation.

Code Result

3 "123" "abcdefg" .+left “123defg”

2 4552 "XX is the answer" .+left “4552 is the answer”

Page 264 of 354

[posn width object string] .+mid [string]

Routing: TOS

Replace width characters, starting at posn of the string with the object, converted to a
string if needed.

Note: The original string is not mutated by this operation.

Code Result

3 2 "XXXX" "abcdefgh" .+mid “abcXXXXfgh”

[left_posn right_posn object string] .+midlr [string]

Routing: TOS

Replace the characters, starting at left_posn and ending at right_posn (counted from the
right), of the string with the object, converted to a string if needed.

Note: The original string is not mutated by this operation.

Code Result

3 3 "XXXX" "abcdefgh" .+midlr “abcXXXXfgh”

[width object string] .+right [string]

Routing: TOS

Replace width characters on the right part of the string with the object, converted to a
string if needed.

Note: The original string is not mutated by this operation.

Code Result

3 "123" "abcdefg" .+right “abcd123”

[width string] .-left [string]

Routing:

Remove the width characters from the left of the string.

Note: The original string is not mutated by this operation.

Code Result

3 "abcdefg" .-left “defg”

Page 265 of 354

[posn width string] .-mid [string]

Routing: TOS

Remove width characters from the string starting at the specified position.

Note: The original string is not mutated by this operation.

Code Result

2 4 "abcdefg" .-mid “abg”

[left_posn right_posn string] .-midlr [string]

Routing: TOS

Delete the characters, starting at left_posn and ending at right_posn (counted from the
right), of the string.

Note: The original string is not mutated by this operation.

Code Result

1 1 "abcdefg" .-midlr “ag”

[width string] .-right [string]

Routing: TOS

Delete width characters from the right of the string.

Note: The original string is not mutated by this operation.

Code Result

2 "abcdefg" .-right “abcde”

[string] .accept [string]

Routing: TOS

Get a string from the user, prompting with the specified string.

Code Result

"Enter data " .accept Prompts the user with “Enter data “ and
waits for a line of text to be entered.

Page 266 of 354

[string] .call [unspecified]

Routing: TOS

Execute the string as code.

Note: This method can be a source of security problems, especially if the string being
executed contains user input.

Code Result

"2 7 +" .call 9

[width string] .cjust [string]

Routing: TOS

Create a string with the given string centered in a field of the specified width.

Note: The original string is not mutated by this operation.

Code Result

10 "abcd" .cjust “ abcd ”

[sub_string string] .contains? [boolean]

Routing: TOS

Return true if string contains the sub_string, else return false.

Code Result

"bcd" "abcdefg" .contains? true

"b3d" "abcdefg" .contains? false

[string] .each{{ … }} []

Routing: NOS (since the Procedure Literal is TOS)

This method is the string iterator. It processes each character in the string in turn, calling
the embedded procedure literal block (between {{ and }}) with the character value (v) and
index (x) of the current array item.

For more information on the methods local to the embedded procedure, see the Procedure
class.

Code Result

"Hello" .each{ v x + . space } (Prints out H0 e1 l2 l3 o4)

"Hello" .each{ v dup + . space } (Prints out HH ee ll ll oo)

"Hello" .each{ x . space } (Prints out 0 1 2 3 4)

Page 267 of 354

[string] .emit []

Routing: TOS

Print the first character of the string

Code Result

"abcd" .emit (Prints “a”)

[width string] .left [string]

Routing: TOS

This method returns the left most width characters from the string.

Note: The original string is not mutated by this operation.

Code Result

2 "abcdefg" .left “ab”

[sub_string string] .left? [boolean]

Routing: TOS

This method determines in the string starts with the sub-string.

Code Result

"abc" "abcdefg" .left? true

"ab3" "abcdefg" .left? false

[string] .length [count]

Routing: TOS

How many characters are in this string? Note that this count is of characters and not bytes.

Code Result

"abc" .length 3

"ab\uFFFFc" .length 4

Page 268 of 354

[string] .lines [array]

Routing: TOS

This method takes a string with optional embedded line feeds and produces an array of
strings broken at those line feeds.

Note: The array strings do not contain any of the line feed characters.

Code Result

"qwer" .lines ["qwer"]

"qwer\nasdf\nzxcv\n" .lines ["qwer", "asdf", "zxcv"]

"qwer\nasdf\nzxcv" .lines ["qwer", "asdf", "zxcv"]

[width string] .ljust [string]

Routing: TOS

Create a string with the given string left justified in a field of the specified width.

Note: The original string is not mutated by this operation.

Code Result

10 "abcd" .ljust “abcd ”

[string] .load [unspecified]

Routing: TOS

This method loads the file with the name given in the string. If no file type is specified, a
type of “.foorth” is used as the default. The file is interpreted as fOOrth source code.

Note: This command is similar to the command)load”name” except that it does not report
or provide feedback to the console.

Code Result

"docs/snippets/times_table" .load (loads the file times_table.foorth)

[string] .lstrip [string]

Routing: TOS

This method strips of any leading spaces on the left of the string

Note: The original string is not mutated by this operation.

Code Result

" abc " .lstrip “abc “

Page 269 of 354

[posn width string] .mid [string]

Routing: TOS

This method extracts width characters starting at the specified position in the string.

Note: The original string is not mutated by this operation.

Code Result

3 2 "abcdefg" .mid “de”

[posn sub_string string] .mid? [boolean]

Routing: TOS

Return true if string contains the sub_string at the indicated position. Otherwise return
false.

Code Result

2 "cde" "abcdefgh" .mid? true

3 "cde" "abcdefgh" .mid? false

[left_posn right_posn string] .midlr [string]

Routing: TOS

This method extracts width characters starting left_posn and ending at right_posn
(counted from the end of the string) from the specified string.

Note: The original string is not mutated by this operation.

Code Result

2 2 "abcdefgh" .midlr “cdef”

[sub_string string] .posn [posn or nil]

Routing: TOS

This method returns the first position that sub_string occurs within the specified string. If
the sub_string does not occur, then nil is returned.

Code Result

"cde" "abcdefgh" .posn 2

"cdx" "abcdefgh" .posn nil

Page 270 of 354

[string] .reverse [string]

Routing: TOS

Create a new string with the characters reversed.

Note: The original string is not mutated by this operation.

Code Result

"Able was I ere I saw Elba" .reverse “ablE was I ere I saw elbA”

"pup" .reverse “pup”

"dog" .reverse “god”

[width string] .right [string]

Routing: TOS

Return the width number of characters at the end (right side) of the string.

Note: The original string is not mutated by this operation.

Code Result

3 "abcdefgh" .right “fgh”

[sub_string string] .right? [boolean]

Routing: TOS

Does the string end with the characters of sub_string?

Code Result

"fgh" "abcdefgh" .right? true

"f4h" "abcdefgh" .right? false

[width string] .rjust [string]

Routing: TOS

Create a string with the given string right justified in a field of the specified width.

Note: The original string is not mutated by this operation.

Code Result

10 "abcd" .rjust “ abcd”

Page 271 of 354

[string] .rstrip [string]

Routing: TOS

This method strips of any trailing spaces on the right of the string

Note: The original string is not mutated by this operation.

Code Result

" abc " .rstrip “ abc”

[string] .shell []

Routing: TOS

Execute the string as a command to the system command line interpreter.

Code Result

"ls" .shell (Executes the ls command.)

[string] .shell_out [string]

Routing: TOS

Execute the string as a command to the system command line interpreter. Any output from
the command is captured and returned in a string.

Note that the returned string may contain embedded end-of-line characters.

Code Result

"ls" .shell_out Gemfile
Gemfile.lock
README.md
(etc...)

[string] .split [array]

Routing: TOS

Given a string, create an array of strings by splitting along spaces. Multiple spaces still
create only one split.

Note: The original string is not mutated by this operation.

Code Result

"abc def 123" .split ["abc", "def", "123"]

"abc def 123" .split ["abc", "def", "123"]

"abcdef123" .split ["abcdef123"]

Page 272 of 354

[string] .strip [string]

Routing: TOS

Create a string with leading and trailing spaces removed.

Note: The original string is not mutated by this operation.

Code Result

" abc " .strip “abc”

[string] .throw []

Routing: TOS

Signal an exception.

Note: This method is similar to the Virtual Machine method throw".

Code Result

"A35: Grundle Skew Error” .throw (Throws an error A35)

[string] .to_lower [string]

Routing: TOS

Create a new string with all the characters converted to lower case.

Note: The original string is not mutated by this operation.

Code Result

"AbCd" .to_lower “abcd”

[object] .to_s [string]

Routing: TOS

Convert the object to a string. This is a helper method of the Object class.

Code Result

2 .to_s “2”

2.5 .to_s “2.5”

5/2 .to_s “5/2”

"apple" .to_s “apple”

Page 273 of 354

[string] .to_t [time]

Routing: TOS

Convert the string to a time object. This is a helper method for the Time class.

[string] .to_t! [time]

Routing: TOS

Convert the string to a time object. This is a helper method for the Time class.

[string] .to_upper [string]

Routing: TOS

Create a new string with all the characters converted to upper case.

Note: The original string is not mutated by this operation.

Code Result

"AbCd" .to_upper “ABCD”

[string string] < [boolean]

Routing: NOS

Is the first string less than the second one?

Code Result

"B" "A" < false

"B" "B" < false

"A" "B" < true

[string string] <= [boolean]

Routing: NOS

Is the first string less than or equal to the second one?

Code Result

"B" "A" <= false

"B" "B" <= true

"A" "B" <= true

Page 274 of 354

[string string] <=> [1, 0, -1]

Routing: NOS

Perform a “three outcome” comparison of the first value with the second value.

Code Result

"B" "A" <=> 1

"B" "B" <=> 0

"A" "B" <=> -1

[string string] > [boolean]

Routing: NOS

Is the first string greater than the second one?

Code Result

"B" "A" > true

"B" "B" > false

"A" "B" > false

[string string] >= [boolean]

Routing: NOS

Is the first string greater than or equal to the second one?

Code Result

"B" "A" >= true

"B" "B" >= true

"A" "B" >= false

Page 275 of 354

[object_or_array] f"a format string" [string]

Routing: NOS

Create a string version of the object(s) using the embedded formatting string. The code:

f"format string"

is short for:

"format string" format

This shorter form is generally more convenient except in those cases where the format
string must be computed or retrieved from storage. See Format Strings above for more
details. This is a helper method of the Object class.

Code Result

1234 f"%X" “4D2”

[23 45] f"%X %X" “17 2D”

[object_or_array format_string] format [string]

Routing: NOS

Create a string version of the object(s) using the specified formatting string.

See Format Strings above for more details. This is a helper method of the Object class.

Code Result

1234 "%X" format “4D2”

[23 45] "%X %X" format “17 2D”

Page 276 of 354

[string] p"a format string" [an_array]

Routing: NOS

Parse the source string using the parse string as a template and return an array of the
extracted data. The code:

p"parse string"

is short for:

"parse string" parse

This shorter form is generally more convenient except in those cases where the parse
string must be computed or retrieved from storage. See Parse Strings above for more
details.

Code Result

"1 2 3" p"%d %d %d" [1 2 3]

"A B C" p"%x %x %x" [10 11 12]

"45" p"%w" E11: Unsupported tag = "%w"

[string format_string] parse [an_array]

Routing: NOS

Parse the source string using the parse string as a template and return an array of the
extracted data.

See Parse Strings above for more details.

Code Result

"1 2 3" "%d %d %d" parse [1 2 3]

"A B C" "%x %x %x" parse [10 11 12]

"45" "%w" parse E11: Unsupported tag = "%w"

Page 277 of 354

Page 278 of 354

StringBuffer

Inheritance: StringBuffer ← String ← Object

StringBuffer Shared Methods =
.lstrip* .rstrip* .to_lower* <<
.reverse* .strip* .to_upper* >>

Helper Methods =
.to_s* "

The StringBuffer class is a specialized subclass of the String class. The StringBuffer class
inherits the full range of character and string manipulating capabilities from the String class
and then adds special, mutating methods specific to string buffers.

StringBuffer Literals

String buffer literals are directly supported by the compiler. String buffer literals may appear
anywhere that a String literal may appear. String buffers and Strings may be distinguished
by the trailing asterisk ('*') applied only to string buffers.

"string buffer contents go here"*

The String characteristics of Embedded, Multi-line, and Lazy String Literals described in the
appropriate sections on String literals, apply equally to StringBuffer literals.

Instance Methods

[a_string_buffer] .lstrip* []

Routing: TOS

Strip off any leading spaces from the string buffer. Note: The string buffer is mutated by
this operation.

Code Result

" abc " dup .lstrip* "abc "

[a_string_buffer] .reverse* []

Routing: TOS

Reverse the characters in the string buffer. Note: The string buffer is mutated by this
operation.

Code Result

"stressed" dup .reverse* "desserts"

Page 279 of 354

[a_string_buffer] .rstrip* []

Routing: TOS

Strip off any trailing spaces from the string buffer. Note: The string buffer is mutated by this
operation.

Code Result

" abc " dup .rstrip* " abc"

[a_string_buffer] .strip* []

Routing: TOS

Strip off any leading or trailing spaces from the string buffer. Note: The string buffer is
mutated by this operation.

Code Result

" abc " dup .rstrip* "abc"

[a_string_buffer] .to_lower* []

Routing: TOS

Convert the characters of the string buffer to lower case. Note: The string buffer is mutated
by this operation.

Code Result

"abcDEF" dup .to_lower* "abcdef"

[an_object] .to_s* [a_string_buffer]

Routing: TOS

Convert the object to a string buffer. If applied to a string buffer, this method returns a
clone of the original string buffer object. This method is a helper method of the Object
class.

Code Result

34 .to_s* "34"

Page 280 of 354

[a_string_buffer] .to_upper* []

Routing: TOS

Convert the characters of the string buffer to upper case. Note: The string buffer is
mutated by this operation.

Code Result

"abcDEF" dup .to_lower* "ABCDEF"

[a_string_buffer a_string] << [a_string_buffer]

Routing: TOS

Append the string (or string buffer) to the end of the string buffer. Note: The string buffer is
mutated by this operation.

Code Result

"Hello "* "World" << "Hello World"

[a_string_buffer a_string] >> [a_string_buffer]

Routing: TOS

Insert the string (or string buffer) to the beginning of the string buffer. Note: The string
buffer is mutated by this operation.

Code Result

"Hello "* "World" >> "WorldHello "

Page 281 of 354

Page 282 of 354

SyncBundle

Inheritance: SyncBundle ← Bundle ← Object

Helper Methods =
.to_sync_bundle

A SyncBundle is a specialized variant of the Bundle class (see Bundle above) that works
exactly the same as a regular bundle with the addition of a Mutex semaphore to preserve
data coherence when multiple threads access the object.

A SyncBundle has all the same methods as a regular Bundle. In fact, it has no methods of
its own except for one helper method, .to_sync_bundle, used to create synchronized
bundles.

SyncBundle vs. Bundle?

A synchronized bundle is needed when the bundle needs to be modified (by adding fibers)
or queried (checking if alive, status, or length) from a thread other than the one performing
the .step or .run method calls. This rule applies to any nested bundles within a
synchronized bundle.

Now if the above criteria is not met, it is always better to use a regular Bundle object as
these will have much lower overhead than the synchronized variants.

Instance Methods

[a_procedure or a_bundle or a_fiber] .to_sync_bundle [a_sync_bundle]

[array_of(procedures, fibers, and bundles)] .to_sync_bundle [a_sync_bundle]

Routing: TOS

Convert the argument to a bundle. This method is partially implemented by helpers in the
Array and Procedure classes. This is the principle manner for creating bundles.

Code Result

[{{ (stuff) }} a_fiber a_sync_bundle]
.to_bundle

a_bundle consisting of a fiber derived from a
procedure, a fiber, and another bundle.

{{ (stuff) }} .to_sync_bundle a_bundle consisting of a fiber derived from a
procedure.

a_fiber .to_sync_bundle a_bundle with a single fiber in it.

a_bundle .to_sync_bundle a_bundle with another bundle in it.

Page 283 of 354

Page 284 of 354

Thread

Inheritance: Thread ← Object

Thread Class Methods =
.current .list .main .new{{

Thread Shared Methods =
.alive? .exit .join .status .vm

Helper Methods =
.sleep .start pause

Thread Class Stubs =
.new

The Thread class is largely used to facilitate the management of the threads in a multi-
threaded application. It also provides methods to access the main thread and to retrieve the
virtual machine of a given thread.

Class Methods

[Thread] .current [thread]

Routing: TOS

Get the current thread.

Code Result

Thread .current #<Thread:0xXXXXXXX>

[Thread] .list [array]

Routing: TOS

Get a array of all currently running threads.

Code Result

Thread .list [#<Thread:0xXXXXXXX run>]

[Thread] .main [thread]

Routing: TOS

Get the main (first) thread of this application.

Code Result

Thread .main #<Thread:0xXXXXXXX>

Page 285 of 354

[string Thread] .new{{ … }} [thread]

Routing: NOS (since the Procedure Literal is TOS)

This method is used to create a named thread with the name coming from the string and
the body specified in the embedded procedure literal block bound by {{ … }}. The thread is
returned to the caller.

For more information on the methods local to the embedded procedure, see the Procedure
class.

Code Result

"Fred" Thread .new{ 5 .sleep } #<Thread:0xXXXXXXX>

Instance Methods

[thread] .alive? [boolean]

Routing: TOS

Is the thread argument alive? Returns true if it else and false if not.

Code Result

Thread .current .alive? true

[thread] .exit []

Routing: TOS

Instruct the thread argument to exit.

Code Result

Thread .current .exit (The thread exits)

[thread] .join []

Routing: TOS

Wait for the specified thread to exit.

Code Result

"Fred" Thread .new{ 5 .sleep } .join (Waits five seconds for the thread to exit)

Page 286 of 354

[numeric] .sleep []

Routing: TOS

This method will put the current thread to sleep for the specified number of seconds. This
is a helper of the Numeric class.

Code Result

1 .sleep (Sleep for one second)

0.1 .sleep (Sleep for one tenth of a second)

1/1000 .sleep (Sleep for one millisecond)

[unspecified procedure] .start [thread]

Routing: TOS

Start the procedure object in its own thread. Any additional data on the stack is copied to
the stack of the new virtual machine created with the new thread instance. This is a helper
method of the Procedure class.

Code Result

3 {{ $proc .call . }} .start #<Thread:0x211f2a8> (Prints out 6)

[thread] .status [string]

Routing: TOS

Get the status of the specified thread as a string

Code Result

Thread .current .status “run”

[thread] .vm [virtual_machine]

Routing: TOS

Retrieve the virtual machine associated with the thread.

Code Result

{{ Thread .list . }} .start .vm #<XfOOrth::VirtualMachine:0x1bb6898>

[] pause []

Routing: VM

This method causes the current thread to pause briefly to allow a chance for other threads
to run. This is a helper method of the Virtual Machine.

Page 287 of 354

Page 288 of 354

Time

Inheritance: Time ← Object

Time Class Methods =
p!" p" parse parse!

Time Shared Methods =
+ .as_zone .minute .second .to_t! <= f"
- .day .month .time_s .utc? <=> format
.as_local .fraction .offset .to_a .year >
.as_utc .hour .sec_frac .to_t < >=

Helper Methods =
.to_t local_offset now

Time Class Stubs =
.new

The Time class is used to represent values of dates, times, and fractions of seconds. Times
are represented internally as a number of seconds (and possibly fractions of seconds)
since the initial time value (January 1, 1970 00:00 UTC). To be clear, the Time class is
designed to operate in the current time frame. Attempting to use it for historical date
references will likely yield incorrect results166.

Creating Time Values

The Time class does not have a literal representation. In addition, the .new method is not
supported. Time values are created by one of two strategies:

1. Using a special helper method, now, to create a time object for the present. See the
now method in the section Special Time Values below.

2. Converting other values into time values with the “.to_t” and “.to_t!” methods. Both of
these methods convert their argument value into a time value. If this is not possible,
the “to_t” method returns nil while the “to_t!” method generates an error. The
supported forms of conversion are listed below:

Source Type: A Numeric167

Example: 1434322201 .to_t

Value: 2015-06-14 18:50:01 -0400

Description:
The numeric value describes the number of seconds (and fractions of
seconds) since the initial time (January 1, 1970 00:00 UTC).

166 In addition the Time class only represents time values. In order to change the behavior of time, the
optional Tardis attachment (not detailed in this document) is required.

167 Excluding Complex numeric values which generate an error.

Page 289 of 354

Source Type: A String

Examples:
"Oct 26 1985 1:22" .to_t
"Oct 26 1985 1:22 UTC" .to_t

Values:
1985-10-26 01:22:00 -0400
1985-10-26 01:22:00 UTC

Description:

The string is converted to a time value using best-guess, sensible default
assumptions. While it is possible to specify a time-zone, this can be very
tricky in practice. If no time zone is specified, the machine local time zone
is used. If UTC is specified, the Coordinated Universal Time168 is used.

Note:
For more control over the conversion process from string to time, consider
the parse methods below.

Source Type: An Array

Example:
[2015 6 14 18 50 0.0 -14400] .to_t
[2015 6 14 18] .to_t

Value:
2015-06-14 18:50:00 -0400
2015-06-14 00:00:00 -0400

Description:
The array contains values for the time components: year, month, day, hour,
minutes, seconds, and offset from UTC. The array need not contain all of
the values, missing data default to sensible values.

Note: It is also possible to convert a time value into a time value. This performs no action.

Special Time Values

[] local_offset [integer]

Routing: VM

This method returns the offset in seconds between local time and UTC. This value is not
actually a constant as it is subject to change with factors such as daylight savings time and
other manipulations of local time.

Code Result

local_offset -14400

168 UTC does indeed stand for Coordinated Universal Time. I hear that a committee was involved.

Page 290 of 354

[] now [time]

Routing: VM

This method returns the current local time of the host computer system.

Code Result

now 2015-06-17 11:51:30 -0400

Time Formatting

The standard169 for formatting time values to strings is largely based on the strftime()
function defined in ISO C170 and POSIX171. Note that the same formatting codes are used by
fOOrth for controlling the conversion of time objects into strings in the format and f"
methods and the parsing of strings into time objects with the parse, parse!, p", and p!"
methods.

These format codes, grouped in related categories are listed below:

Date formats (Year, Month, Day):

Format Description

%Y Year with century if provided, will pad result at least 4 digits.

%C The century (Year/100)

%m Month of the year, zero-padded (01..12)

%_m Month of the year, blank-padded (1..12)

%-m Month of the year, with no-padding (1..12)

%B The full month name (“January”)

%^B The full month name in upper-case (“JANUARY”)

%b The abbreviated month name (“Jan”)

%^b The abbreviated month name in upper-case (“JAN”)

%h Equivalent to %b

%d Day of the month, zero-padded (01..31)

%-d Day of the month, with no padding (1..31)

%e Day of the month, blank-padded (1..31)

%j Day of the year (001..366)

169 This material is largely taken from http://ruby-doc.org/core-2.2.0/Time.html#method-i-strftime
170 Please see: https://en.wikipedia.org/wiki/ANSI_C
171 Please see: https://en.wikipedia.org/wiki/POSIX

Page 291 of 354

https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/ANSI_C
http://ruby-doc.org/core-2.2.0/Time.html#method-i-strftime

Time formats (Hour, Minute, Second, Subsecond):

Format Description

%H Hour of the day, 24-hour clock, zero-padded (00..23)

%k Hour of the day, 24-hour clock, blank-padded (0..23)

%I Hour of the day, 12-hour clock, zero-padded (01..12)

%l172 Hour of the day, 12-hour clock, blank-padded (1..12)

%P Meridian indicator, lowercase (``am'' or ``pm'')

%p Meridian indicator, uppercase (``AM'' or ``PM'')

%M Minute of the hour (00..59)

%S Second of the minute (00..60)

%L Millisecond of the second (000..999)

%N Fractional seconds digits, default is 9 digits (nanosecond)

%3N Fractional seconds digits, 3 digits (millisecond)

%6N Fractional seconds digits, 6 digits (microsecond)

%9N Fractional seconds digits, 9 digits (nanosecond)

Time zone formats:

Format Description

%z Time zone as hour and minute offset from UTC (e.g. +0900)

%:z Time zone as hour and minute offset from UTC with a colon (e.g. +09:00)

%::z Time zone as hour, minute and second offset from UTC with a colon (e.g.
+09:00:00)

%Z Abbreviated time zone name or similar information. (OS dependent)

Weekday formats:

Format Description

%A The full weekday name (“Sunday”)

%^A The full weekday name in upper-case (“Sunday”)

%a The abbreviated name (“Sun”)

%^a The abbreviated name in upper-case (“Sun”)

%u Day of the week (Monday is 1, 1..7)

%w Day of the week (Sunday is 0, 0..6)

172 This character is a lower case “L”, and not an upper-case “I”.

Page 292 of 354

ISO 8601 week-based year and week number formats:

Note: The first week of YYYY must start with a Monday. The days in the year before that
first week are in the last week of the previous year.

Format Description

%G The week-based year

%g The last 2 digits of the week-based year (00..99)

%V Week number of the week-based year (01..53)

Week number formats:

Note: The first week of YYYY that starts with a Sunday or Monday (according to %U or
%W). The days in the year before the first week are in week 0.

Format Description

%U Week number of the year. The week starts with Sunday. (00..53)

%W Week number of the year. The week starts with Monday. (00..53)

Seconds since the Epoch formats:

Format Description

%s Number of seconds since 1970-01-01 00:00:00 UTC.

Literal strings:

Format Description

%n A newline character (\n)

%t A tab character (\t)

%% A literal ``%'' character

Page 293 of 354

Combination formats:

Format Description

%c Date and time (%a %b %e %T %Y)

%D Date (%m/%d/%y)

%F The ISO 8601 date format (%Y-%m-%d)

%v VAX173 VMS date (%e-%^b-%4Y)

%x Same as %D

%X Same as %T

%r 12-hour time (%I:%M:%S %p)

%R 24-hour time (%H:%M)

%T 24-hour time (%H:%M:%S)

Class Methods

[string Time] p!" … " [time]

Routing: NOS

This is the form of the parse method with an embedded format string. For details on the
parse string, see the section Time Formatting above.

If the source string cannot be parsed into a time, an error occurs. Contrast this with the p"
method.

Code Result

"Sunday June 14 at 06:50 PM" Time
p"%A %B %d at %I:%M %p"

2015-06-14 18:50:00 -0400

"Someday June 14 at 06:50 PM" Time
p"%A %B %d at %I:%M %p!"

F40: Cannot parse "Someday June 14 at
06:50 PM" into a Time instance

173 Oh such memories of the beloved (but really slow) VAX 11/780 of my college days.

Page 294 of 354

[string Time] p" … " [time]

Routing: NOS

This is the form of the parse method with an embedded format string. For details on the
parse string, see the section Time Formatting above.

If the source string cannot be parsed into a time, the value nil is returned. Contrast this
with the p!" method.

Code Result

"Sunday June 14 at 06:50 PM" Time
p"%A %B %d at %I:%M %p"

2015-06-14 18:50:00 -0400

"Someday June 14 at 06:50 PM" Time
p"%A %B %d at %I:%M %p"

nil

[string Time format_string] parse [time]

Routing: NOS

This is the form of the parse method with a format string. For details on the parse string,
see the section Time Formatting above.

If the source string cannot be parsed into a time, the value nil is returned. Contrast this
with the parse! method.

Code Result

"Sunday June 14 at 06:50 PM" Time
"%A %B %d at %I:%M %p" parse

2015-06-14 18:50:00 -0400

"Someday June 14 at 06:50 PM" Time
"%A %B %d at %I:%M %p" parse

nil

[string Time format_string] parse! [time]

Routing: NOS

This is the form of the parse method with a format string. For details on the parse string,
see the section Time Formatting above.

If the source string cannot be parsed into a time, an error occurs. Contrast this with the
parse method.

Code Result

"Sunday June 14 at 06:50 PM" Time
"%A %B %d at %I:%M %p" parse!

2015-06-14 18:50:00 -0400

"Someday June 14 at 06:50 PM" Time
"%A %B %d at %I:%M %p" parse!

F40: Cannot parse "Someday June 14 at
06:50 PM" into a Time instance

Page 295 of 354

Instance Methods

[time numeric] + [time]

Routing: NOS

Add the number of seconds in the numeric to the time to create a new time object in the
future (or in the past if a negative number is added).

Note: The original time object is not mutated by this method.

Code Result

now 10 + 2015-06-17 12:58:18 -0400
(A time 10 seconds in the future)

[time time or number] – [duration or time]

Routing: NOS

The time subtraction method has two distinct behaviors:

• In the first form, one time is subtracted from another, the result is a Duration with a
span equal to the number of seconds between the two time values. The span is
negative if the first time value is less than the second time value.

• In the second form, a number of seconds is subtracted from a time and the result is
a new time in the past (or in the future if a negative number is subtracted.).

Note: The original time object is not mutated by this method.

Code Result

"1955-11-5 13:00" .to_t
"Oct 26 1985 1:22" .to_t -

Duration instance <-945865320.0
seconds>174.

now 10 - 2015-06-17 13:30:21 -0400
(A time 10 seconds ago)

[time] .as_local [time]

Routing: TOS

Convert the given time to the same time in the local time zone. If the given time is already
in the local time zone, then no change is made.

Note: The original time object is not mutated by this method.

Code Result

"12:00 UTC" .to_t .as_local 2015-06-17 08:00:00 -0400

174 The approximate amount of time, in seconds, that Marty McFly travels on his first time travel voyage.

Page 296 of 354

[time] .as_utc [time]

Routing: TOS

Convert the given time to the same time zone as UTC. If the given time is already UTC,
then no change is made.

Note: The original time object is not mutated by this method.

Code Result

"8:00" .to_t .as_utc 2015-06-17 12:00:00 +0000

[new_offset time] .as_zone [time]

Routing: TOS

Convert the given to to the time zone with the specified offset from UTC. If the given time
already has that offset, no change is made.

Note:

• If the new offset used is local_offset, then this is the same as .as_local

• If the new offset used is 0, the this is the same as .as_utc.

• The original time object is not mutated by this method.

Code Result

3600 "12:00" .to_t .as_zone 2015-06-17 17:00:00 +0100

0 "8:00" .to_t .as_zone 2015-06-17 12:00:00 +0000

local_offset "12:00 UTC" .to_t .as_zone 2015-06-17 08:00:00 -0400

[time] .day [day_of_month]

Routing: TOS

Extract the day of the month (1..31) from the time object.

Code Result

now .day 17

[time] .fraction [float]

Routing: TOS

Extract the fractions of a second (0.0..0.9999...) from the time object.

Code Result

now .fraction 0.725853

Page 297 of 354

[time] .hour [integer]

Routing: TOS

Extract the hour (0..23) from the time object.

Code Result

now .hour 14

[time] .minute [integer]

Routing: TOS

Extract the minute (0..59) from the time object.

Code Result

now .minute 39

[time] .month [integer]

Routing: TOS

Extract the month (1..12) from the time object

Code Result

now .month 6

[time] .offset [integer]

Routing: TOS

Extract from the time object, the offset in seconds from UTC.

Code Result

now .offset -14400

[time] .sec_frac [integer]

Routing: TOS

Extract the fractional seconds (0.0..59.9999...) from the time object.

Code Result

now .sec_frac 32.578591

Page 298 of 354

[time] .second [integer]

Routing:

Extract the whole seconds (0..59) from the time object.

Code Result

now .second 24

[time] .time_s [string]

Routing: TOS

Convert the time to a reasonable string representation. For more control over the
conversion process, consider the format and f" methods instead.

Code Result

now .time_s Wed Jun 17 14:49:27 2015

[time] .to_a [array]

Routing: TOS

Break out all of the time information into an array of 7 elements. These elements, by
position in the array, are:

[Year Month Day Hour Minute Seconds Offset]

These values are all integers except the Seconds which is a float value including any
fractions of seconds.

Note: The array created by the .to_a method is compatible with the array required by the
to_t and to_t! methods.

Code Result

now .to_a [2015 6 17 14 51 9.094222 -14400]

Page 299 of 354

[array/numeric/string/time] .to_t [time]

Routing: TOS

Convert the argument into a time object. This method is actually a composite of three
helper methods and a time method.

See Creating Time Values above for more details.

If it is not possible to convert the argument into a time object, nil is returned. Contrast with
the to_t! method.

Code Result

[2015 6 17 14 51 9.09422 -14400]
.to_t

2015-06-17 14:51:09 -0400

1434322201 .to_t 2015-06-14 18:50:01 -0400

"1955-11-5 13:00" .to_t 1955-11-05 13:00:00 -0400

now .to_t 2015-06-17 15:18:33 -0400

[2015 13 7 14 51 9.094222 -14400]
.to_t

nil

infinity .to_t nil

1+3i .to_t F20: A Complex instance does not
understand .to_t (:_218).

"apple" .to_t nil

Page 300 of 354

[array/numeric/string/time] .to_t! [time]

Routing: TOS

Convert the argument into a time object. This method is actually a composite of three
helper methods and a time method.

See Creating Time Values above for more details.

If it is not possible to convert the argument into a time object, an error occurs. Contrast
with the to_t method.

Code Result

[2015 6 17 14 51 9.09422 -14400]
.to_t!

2015-06-17 14:51:09 -0400

1434322201 .to_t! 2015-06-14 18:50:01 -0400

"1955-11-5 13:00" .to_t! 1955-11-05 13:00:00 -0400

now .to_t! 2015-06-17 15:18:33 -0400

[2015 13 7 14 51 9.09422 -14400]
.to_t!

F40: Cannot convert [2015, 13, 7, 14, 51,
9.09422, -14400] to a Time instance

infinity .to_t! F40: Cannot convert Infinity to a Time
instance

1+3i .to_t! F20: A Complex instance does not
understand .to_t (:_218).

"apple" .to_t! F40: Cannot convert "apple" to a Time
instance

[time] .utc? [boolean]

Routing: TOS

This method returns true if the argument is in the same time zone as UTC.

Code Result

now .utc? false

"11:45 UTC" to_t .utc? true

[time] .year [integer]

Routing: TOS

Extract the year from the time object.

Code Result

now .year 2015

Page 301 of 354

[time time] < [boolean]

Routing: NOS

Is the first time less than the second one?

Code Result

1434322200 .to_t 1434322201 .to_t < true

1434322201 .to_t 1434322201 .to_t < false

1434322201 .to_t 1434322200 .to_t < false

[time time] <= [boolean]

Routing: NOS

Is the first time less than or equal to the second one?

Code Result

1434322200 .to_t 1434322201 .to_t <= true

1434322201 .to_t 1434322201 .to_t <= true

1434322201 .to_t 1434322200 .to_t <= false

[time time] <=> [1, 0, -1]

Routing: NOS

Perform a “three outcome” comparison of two time values.

Code Result

1434322200 .to_t 1434322201 .to_t <=> -1

1434322201 .to_t 1434322201 .to_t <=> 0

1434322201 .to_t 1434322200 .to_t <=> 1

[time time] > [boolean]

Routing: NOS

Is the first time greater than the second one?

Code Result

1434322200 .to_t 1434322201 .to_t > false

1434322201 .to_t 1434322201 .to_t > false

1434322201 .to_t 1434322200 .to_t > true

Page 302 of 354

[before] >= [after]

Routing: NOS

Is the first time greater than or equal to the second one?

Code Result

1434322200 .to_t 1434322201 .to_t >= false

1434322201 .to_t 1434322201 .to_t >= true

1434322201 .to_t 1434322200 .to_t >= true

[time] f" … " [string]

Routing: NOS

Format the time value using the embedded format string as a template. See the section
Time Formatting for more details on the available options.

Code Result

1434322201 .to_t f"%A %B %d at %I:%M
%p"

"Sunday June 14 at 06:50 PM"

1434322201 .to_t f"%A %B %d, %r" "Sunday June 14, 06:50:01 PM"

1434322201 .to_t f"%A %B %d, %T" "Sunday June 14, 18:50:01"

[time fmt_string] format [string]

Routing: NOS

Format the time value using the format string argument as a template. See the section
Time Formatting for more details on the available options.

Code Result

1434322201 .to_t "%A %B %d at %I:%M %p"
format

"Sunday June 14 at 06:50 PM"

1434322201 .to_t "%A %B %d, %r" format "Sunday June 14, 06:50:01 PM"

1434322201 .to_t "%A %B %d, %T" format "Sunday June 14, 18:50:01"

Class Stubs

The following method is stubbed out in the Time class and not available: .new

Page 303 of 354

Page 304 of 354

True

Inheritance: True ← Object

No unique methods defined.

Helper Methods =
true

The True class is a used to implement the true constant value. In spite of this, the
functionality of true values is actually contained in the Object class.

True Literals

Instances of the True class are made available by the Virtual Machine helper method “true”.

Note: Remember that True is the class and true is the value.

Page 305 of 354

Page 306 of 354

VirtualMachine

Inheritance: VirtualMachine ← Object

VirtualMachine Shared Methods =
!:)start ?dup dup rot
")threads [e self
)")time _FILE_ epsilon space
)classes)unmap" a_day false spaces
)context)version a_minute gather swap
)context!)vm a_month if switch
)debug)vm! a_second infinity throw"
)elapsed)words a_year load" true
)entries -infinity accept local_offset try
)globals .: accept" max_float tuck
)irb .:: an_hour min_float val#:
)load" .dump begin nan val$:
)map" .elapsed_time class: nil var#:
)nodebug .restart_timer clear nip var$:
)noshow .start_time clone now vm
)pl .subclass: complex over {
)pry .to_s copy pause {{
)quit .vm_name cr pi
)restart 2drop do pick
)set_pl 2dup dpr rational
)show : drop rational!

The Virtual Machine is the center of activity of the fOOrth language system. It contains the
stack, compiler, symbol mapping facility, context tracking and many other essential services
utilized by the the entire class hierarchy. The same is also somewhat true of the Object
class. The distinction between these is a matter of scope. The Object class is system wide.
The virtual machine exists as a distinct instance per thread. Thus the virtual machine is
better suited to managing the large scope of activities that are on a per-thread basis.

Since every thread must have exactly one virtual machine, it also serves as a universal
routing target. Thus the virtual machine is used heavily by the compiler in the
implementation of control and data literal structures.

The virtual machine is also the target for almost all user command level methods for the
same reason.

Page 307 of 354

Instance Methods

[] !: method_name … ; []

Routing: VM

This method is used to define a method on the virtual machine. These methods execute
immediately even when in deferred or compile modes.

Notes

• There are pretty much no restrictions on the name except that it not contain spaces
and any " signals an embedded string (which is also immediate).

Code Result

!: one 1 ; (Creates an immediate VM method one)

Local Methods:

See Class .: for more details.

[] " … " [string]

Routing: VM

This is the string literal support method of the Virtual Machine. Please see class String
Literals for more information.

[] -infinity [-Infinity]

Routing: VM

Please see Numeric – Special Numeric Values, above, for more information.

[class] .: method_name … ; []

Routing: VM

This method is used to define new methods on the specified class. Please see the Class
class for more details.

[object] .:: []

Routing: VM.

Start defining an exclusive (singleton in Ruby parlance) method on the receiver object.
Please see the Object class for more details.

Page 308 of 354

[virtual_machine] .dump []

Routing: TOS

This debug method displays a “dump” of crucial data in the given virtual machine. See
Tracking the Virtual Machine above for mere details.

Code Result

vm .dump (Displays a dump of the virtual machine)

[virtual_machine] .elapsed_time [float]

Routing: TOS

This method returns the number of seconds since the virtual machine was started or
restarted.

Code Result

vm .elapsed 68.952106 (Example only)

[class] .subclass: class_name []

Routing: VM

This method is used to create new classes. See the Class class for more details.

[virtual_machine] .restart_timer []

Routing: TOS

Reset the start time of the virtual machine to now.

Code Result

vm .restart

[virtual_machine] .to_s [string]

Routing: TOS

Convert the virtual machine to a string. This method overrides the default implementation
in the Object class.

Code Result

vm .to_s “VirtualMachine instance <Main>”

Page 309 of 354

[virtual_machine] .start_time [date_time]

Routing: TOS

Get the start time of the virtual machine.

Code Result

vm .start time_object

[before] .vm_name [after]

Routing: VM

Return the name of the virtual machine as a string.

Code Result

vm .vm_name “Main”

[obj_a obj_b] 2drop []

Routing: VM

This method drops the top 2 elements from the data stack.

Code Result

1 2 3 4 2drop 1 2

[obj_a obj_b] 2dup [obj_a obj_b obj_a obj_b]

Routing: VM

This method duplicates the top 2 elements on the stack.

Code Result

1 2 3 4 2dup 1 2 3 4 3 4

Page 310 of 354

[] : method_name … ; []

Routing: VM

This method is used to define a method on the virtual machine. These methods execute
normally with to the current mode.

Notes

• There are pretty much no restrictions on the name except that it not contain spaces
and any " signals an embedded string.

• This type of fOOrth method most closely resembles a classical FORTH word.

Code Result

: double dup + ; (Create the double method)

Local Methods:

See Class .: for more details.

[object] ?dup [object object] or [false/nil]

Routing: VM

Duplicate the top element of the stack unless it is false or nil.

Code Result

43 ?dup 43 43

true ?dup true true

false ?dup false false

nil ?dup nil nil

[] […] [array]

Routing: VM

This method is used to create array literal. See Array Literals above for more details.

Page 311 of 354

[] _FILE_ [string]

Routing: VM, Immediate

Retrieve the absolute path/name of the file currently being loaded. If compiling from the
console or a string, nil is returned instead.

Code Result

FILE “C:/Sites/fOOrth/integration/_FILE_test.foorth”

"_FILE_ .call nil

>_FILE_ nil

[] a_day [duration]

Routing: VM

A helper method for Duration. See Special Duration Values for more information.

[] a_minute [duration]

Routing: VM

A helper method for Duration. See Special Duration Values for more information.

[] a_month [duration]

Routing: VM

A helper method for Duration. See Special Duration Values for more information.

[] a_second [duration]

Routing: VM

A helper method for Duration. See Special Duration Values for more information.

[] a_year [duration]

Routing: VM

A helper method for Duration. See Special Duration Values for more information.

Page 312 of 354

[] accept [string]

Routing: VM

With a prompt of '? ', get a line of text from the console.

Code Result

accept string

[] accept" … " [string]

Routing: VM

Using the embedded string as a prompt, get a line of text from the console

Code Result

accept"Enter cost" string

[] an_hour [duration]

Routing: VM

A helper method for Duration. See Special Duration Values for more information.

Page 313 of 354

[] begin … until/again/repeat []

Routing: VM

These methods are used to support arbitrary loops in fOOrth. There are three types of
methods involved: begin, option while expression, and ending.

The begin method, marks the start of the loop.

The optional while method bails out of the loop if its argument is false. Zero or more while
methods may be present in one loop.

Finally the ending methods until, again, or repeat, mark the end of the loop. The until
method will exit the loop if given a true parameter. The again and repeat methods rely on a
while method to terminate the loop.

This statement may be structured in many ways, here are a few examples:

(loop ends when condition is true)
begin (body) (condition) until

(loop end when condition is false)
begin (body) (condition) while (body) again

(loop end when condition1 or condition2 are false)
begin (body) (condition1) while (body) (condition2) while (body) again

(loop end when condition1 is false or condition2 is true)
begin (body) (condition1) while (body) (condition2) until

Where (body) represents the loop body code, and (condition) is a loop test or exit criteria.
See the begin statement above for more details.

Local Methods:

[boolean] while []

Routing: Compiler Context.

This method exits the loop if the boolean is false.

[boolean] … until []

Routing: Compiler Context.

This method marks the end of the loop. Further, it ends the loop if the boolean is true.

[] ... again []

Routing: Compiler Context.

This method marks the end of the loop. This method is interchangeable with repeat.

Page 314 of 354

[] … repeat []

Routing: Compiler Context.

This method marks the end of the loop. This method is interchangeable with again.

[] class: class_name []

Routing: VM

This method is used to create new classes. See the Class class for more details.

[undefined] clear []

Routing: VM

This method clears the data stack.

Code Result

9 6 7 11 11 clear (The stack is empty)

[object] clone [object object]

Routing: VM

Take the top element of the stack and create a clone (deep copy) of it. The original object
becomes the second element on the stack.

Code Result

"apple" clone “apple” “apple”

"apple" clone distinct? true

[real_part imaginary_part] complex [complex]

Routing: VM

Given two numbers, create a complex number. See the Complex class for more details.

Page 315 of 354

[object] copy [object object]

Routing: VM

Take the top element of the stack and create a (shallow) copy of it. The original object
becomes the second element on the stack.

Code Result

"apple" clone “apple” “apple”

"apple" clone distinct? true

[] cr []

Routing: VM

Send a new line character to the console.

Code Result

cr (A new line is sent to the console.)

[start_value end_stop] do … loop/+loop []

Routing: VM

The do loop is used to facilitate counted iteration in fOOrth. In general, looping proceeds
from the start_value up to the end_stop-1. Access to the iteration value is provided by the
“i” method while “-i” supplies the reverse iteration value. The related “j” and “-j” methods
allow access to an “outer” loop iteration value. Finally the “loop” method closes off the loop
body and adds one to the iteration value, while “+loop” allows the iteration step to be
specified.

Note: In order to work correctly the “-i”/”-j” methods require the end_stop to be one more
than the last value iterated.

See the do statement above for more information.

Code Result

0 10 do i . space loop (Prints 0 1 2 3 4 5 6 7 8 9)

0 10 do -i . space loop (Prints 9 8 7 6 5 4 3 2 1 0)

0 9 do i . space 2 +loop (Prints 0 2 4 6 8)

0 9 do -i . space 2 +loop (Prints 8 6 4 2 0)

0 10 do -i . space 2 +loop (Prints 9 7 5 3 1)

Local Methods:

Page 316 of 354

[] i [iteration_value]

Routing: Compiler Context.

Get the iteration value of the do loop. See above.

[] j [iteration_value]

Routing: Compiler Context.

Get the iteration value of an outer loop. This is to support nested loops. If there is no outer
loop, the value zero is returned.

Code Result

0 2 do
 0 2 do i . ."," j . space loop
loop

(Prints 0,0 1,0 0,1 1,1)

0 2 do j . space loop (Prints 0 0)

[] -i [iteration_value]

Routing: Compiler Context.

Get the reverse iteration value. Specifically, this is computed as:

(start_value + end_stop – 1) – i.

Code Result

10 20 do -i . space loop (Prints 19 18 17 16 15 14 13 12 11 10)

[] -j [iteration_value]

Routing: Compiler Context.

Get the reverse iteration value of an outer loop. This supports reverse outer nested loops.
If there is no outer loop, the value zero is returned.

Code Result

0 2 do
 0 2 do -i . ."," -j . space loop
loop

(Prints 1,1 0,1 1,0 0,0)

0 2 do j . space loop (Prints 0 0)

[] … loop []

Routing: Compiler Context.

This method marks the end of the loop.

Page 317 of 354

[step_value] … +loop []

Routing: Compiler Context.

This method increments the loop index by the specified value and marks the end of the
loop. If the step value is not a number or is less than or equal to zero, an error occurs.

Code Result

0 10 do i . space 2 +loop (Displays “0 2 4 6 8”)

0 10 do i . space "apple" +loop F40: Cannot convert a String instance to a
Numeric instance

0 10 do i . space 0 +loop F41: Invalid loop increment value: 0

[] dpr [float]

Routing: VM

A helper method for Numeric. See Special Numeric Values for more information.

[object] drop []

Routing: VM

Drop the top-of-stack element. If there is no such element, an error occurs.

Code Result

1 2 3 drop 1 2

drop F30: Data Stack Underflow: pop

[object] dup [object object]

Routing: VM

Duplicate the top-of-stack element. This only duplicates references, not the data itself

Code Result

4 dup 4 4

"apple" dup “apple” “apple”

"apple" dup identical? true

"apple" dup distinct? false

Page 318 of 354

[] e [float]

Routing: VM

A helper method for Numeric. See Special Numeric Values for more information.

[] epsilon [float]

Routing: VM

A helper method for Numeric. See Special Numeric Values for more information.

[] false [false]

Routing: VM

A helper method for False. See False literals for more information.

[d0 .. dN] gather [[d0 .. dN]]

Routing: VM

A helper method for Array. See Array for more details.

[boolean] if … then [unspecified]

Routing: VM

The “if” method implements the classic if statement in fOOrth. The if statement is used for
cases where one or two branches are required. Where an arbitrary number of code
branches, please see the switch statement below. The generalized layout of the if
statement is:

(a condition) if (true clause) else (false clause) then

Where the else clause is optional, and only one of them is allowed. See the if statement
above for more details.

Code Result

2 odd? if ."ODD" else ."EVEN" then (Prints EVEN)

3 odd? if ."ODD" else ."EVEN" then (Prints ODD)

true if space else cr else ."?" then F11: ?else?

Local Methods:

Page 319 of 354

[] … else … []

Routing: Compiler Context.

This marks the beginning of the optional else clause.

[] … then []

Routing: Compiler Context.

This marks the end of the if statement.

[] infinity [float]

Routing: VM

A helper method for Numeric. See Special Numeric Values for more information.

[] load"file_name" [unspecified]

Routing: VM

This methods loads a fOOrth source file, executing the code contained therein. If no file
type is given, a type of “.foorth” is used as a default.

Note: This method is similar to the)load" command except that it does not provide
feedback to the console.

Code Result

load"my_file.foorth" (Loads my_file.foorth)

load"my_file" (Loads my_file.foorth)

load"my_file." (Loads my_file.)

[] max_float [float]

Routing: VM

A helper method for Numeric. See Special Numeric Values for more information.

[] min_float [float]

Routing: VM

A helper method for Numeric. See Special Numeric Values for more information.

Page 320 of 354

[] nan [float]

Routing: VM

A helper method for Numeric. See Special Numeric Values for more information.

[before] nil [nil]

Routing: VM

A helper method for Nil. See Nil Literals for more information.

[object_a object_b] nip [object_b]

Routing: VM

Drop the next-of-stack element. The top-of-stack element is not affected.

Code Result

1 2 3 nip 1 3

[object_a object_b] over [object_a object_b object_a]

Routing: VM

Push the next-of-stack element onto the stack. This becomes the new top-of-stack
element.

Code Result

1 2 3 over 1 2 3 2

[] pause []

Routing: VM

Pause the current thread. See the Thread class above for more details.

[] pi [float]

Routing: VM

A helper method for Numeric. See Special Numeric Values for more information.

Page 321 of 354

[index] pick [object]

Routing: VM

This method picks off the item on the stack selected by the index, where 1 represents the
top-of-stack, 2 the next-of-stack, etc. Attempting to read elements deeper than the total
stack or “before” the top-of-stack generate an error.

Code Result

1 2 3 1 pick 1, 2, 3, 3

1 2 3 3 pick 1, 2, 3, 1

1 2 3 "apple" pick F40: Cannot coerce a String instance to an
Integer instance

1 2 3 0 pick F30: Data Stack Underflow: peek

[numerator denominator] rational [rational]

Routing: VM

Convert a numerator and denominator into a rational number. See the Rational class for
more details.

[numerator denominator] rational! [rational]

Routing: VM

Convert a numerator and denominator into a rational number. See the Rational class for
more details.

[object_a object_b object_c] rot [object_b object_c object_a]

Routing: VM

This method “rotates” the top three elements on the stack.

Code Result

1 2 3 rot 2 3 1

Page 322 of 354

[] self [object]

Routing: VM

This method pushes the current “owner” object onto the stack.

See the section Self, above, for more details.

Code Result

>self VirtualMachine instance <Main>

4 .with{ self } 4

class: MyClass
MyClass .: .who_r_u self ;
MyClass .new .who_r_u .name “MyClass instance”

[] space []

Routing: VM

Prints a space character on the console.

Code Result

space (Prints a space)

[count] spaces []

Routing: VM

Prints count spaces on the console.

Code Result

1 . 5 spaces 1 . (Prints 1 1)

[object_a object_b] swap [object_b object_a]

Routing: VM

This method exchanges (swaps) the top two elements of the stack.

Code Result

1 2 swap 2 1

Page 323 of 354

[unspecified] switch … end [unspecified]

Routing: VM

The switch statement is used to create a program decision point with an arbitrary number
of code branches. Recall that the if statement is used for cases where one or two
branches suffice.

In general, the switch statement is bound by the key words “switch” and “end”. In between,
arbitrary code is permitted with two additional local methods: “break” and “?break”. When
a break is executed, the program “jumps” to the end of the switch and exits. The ?break is
the same except that this jump action is only taken if its argument is not false or nil.

The switch statement is laid out along the following lines:

switch
 condition1 if action1 break then
 condition2 if action2 break then
 condition3 ?break
 condition4 if action4 break then

 (etc)

 default_action_here
end

There are many possible ways to utilize the switch statement, the above is merely one
example. See the switch statement above for more details.

Local Methods:

[] break []

Routing: Compiler Context.

This method breaks out of the switch code block.

[boolean] ?break []

Routing: Compiler Context.

This method breaks out of the switch code block if the argument is true, else it takes no
action.

[] … end []

Routing: Compiler Context.

This method marks the end of the switch block.

Page 324 of 354

[] throw"Error Message" []

Routing: VM

This method is used to send exception messages. These messages consist of strings with
a formal error code followed by a free-form descriptive message.

See Handling Exceptions above for more details.

Code Result

throw"U01: Invalid User Id." (Throws the exception U01)

[] true [true]

Routing: VM

A helper method for True. See True Literals for more information.

Code Result

true true

[unspecified] try … end [unspecified]

Routing: VM

The try block is used to control and contain exceptions. The try block is composed of three
sections:

• The try section that contains the potentially error prone code.

• The optional catch section that responds to and processes exceptions.

• The optional finally section that performs clean-up actions regardless of whether
any exceptional conditions were encountered.

A simple example try block is:

: ttry
 try swap dup . ." / " swap dup . ." = " / .
 catch
 switch
 ?"E15" if clear ."Error" break then
 bounce
 end
 finally
 cr ."Done!" cr
 end ;

>100 2 ttry
100 / 2 = 50
Done!

Page 325 of 354

>10 0 ttry
10 / 0 = Error
Done!

See Handling Exceptions above for more details.

Local Methods:

[] catch []

Routing: Compiler Context.

This method starts the exception handling portion of the try block.

[] ?"error_code" [boolean]

Routing: Compiler Context.

This method matches the error code of the current exception with the embedded string.
The strings are compared only as far as the length of the embedded string. If the sub-
strings match, true is returned, else false. This method is only permitted in the catch
section.

Code Result

?"E" (Matches all errors codes starting with “E”)

?"E05" (Matches all “E05” codes, Index Error)

?"E05,01" (Matches all “E05,01” codes, Key Error)

[] bounce []

Routing: Compiler Context.

Relaunch the current error so that some higher level catch clause can deal with it. This
method is only permitted in the catch section.

[] error [string]

Routing: Compiler Context.

Retrieve the full text of the current error message. This method is only permitted in the
catch section.

[] finally []

Routing: Compiler Context.

This method starts the cleanup section of the try block. The finally section is always
executed regardless of any caught or un-caught exceptions that may occur.

[before] … end [after]

Routing: Compiler Context.

The method closes off the try block.

Page 326 of 354

[object_a object_b] tuck [object_b object_a object_b]

Routing: VM

This method tucks the top element of the stack under the second element.

Code Result

1 2 tuck 2 1 2

[object] val#: thread_data_name []

Routing: VM

This method is used to define a thread local value. This value is available at all points in
this thread. A copy of this value will be made in any threads created after this value is
created. The name of the value created must conform to the following regex:

/^#[a-z][a-z0-9_]*$/

This means the the name must start with a “#” and a lower case letter followed by zero or
more lower case letters or digits or underscores “_”.

See Data Storage in fOOrth – Scoping, for more details on this topic.

Code Result

42 val#: #answer (Creates the thread value #answer)

42 val#: wrong F10: Invalid val name wrong

[object] val$: global_data_name []

Routing: VM

This method is used to define a global value. This value is available to all points in the
fOOrth program. The name of the value created must conform to the following regex:

/^\$[a-z][a-z0-9_]*$/

This means the the name must start with a “$” and a lower case letter followed by zero or
more lower case letters or digits or underscores “_”.

See Data Storage in fOOrth – Scoping, for more details on this topic.

Code Result

42 val$: $answer (Creates the global value $answer)

42 val$: wrong F10: Invalid val name wrong

Page 327 of 354

[object] var#: thread_data_name []

Routing: VM

This method is used to define a thread local variable. This variable is available at all points
in this thread. A copy of this variable will be made in any threads created after this variable
is created. The name of the variable created must conform to the following regex:

/^#[a-z][a-z0-9_]*$/

This means the the name must start with a “#” and a lower case letter followed by zero or
more lower case letters or digits or underscores “_”.

See Data Storage in fOOrth – Scoping, for more details on this topic.

Code Result

42 var#: #answer (Creates the thread variable #answer)

42 var#: wrong F10: Invalid var name wrong

[object] var$: global_data_name []

Routing: VM

This method is used to define a global variable. This variable is available to all points in
the fOOrth program. The name of the variable created must conform to the following
regex:

/^\$[a-z][a-z0-9_]*$/

This means the the name must start with a “$” and a lower case letter followed by zero or
more lower case letters or digits or underscores “_”.

See Data Storage in fOOrth – Scoping, for more details on this topic.

Code Result

42 var$: $answer (Creates the global variable $answer)

42 var$: wrong F10: Invalid var name wrong

[] vm [virtual_machine]

Routing: VM

Get the current thread's virtual machine instance.

Code Result

vm .name “VirtualMachine instance <Main>”

Page 328 of 354

[] { … } [hash]

Routing: VM

This is a helper method for creating Hash objects. See Hash Literals above for more
details.

[] {{ … }} [procedure]

Routing: VM

This is a helper method for creating Procedure objects. See Procedure Literals above for
more details.

Commands

[])" … " []

Routing: VM

This command submits the embedded string as input to the console's command
processor. Some examples of this command in action are:

>)"ls"
Gemfile demo.rb fOOrth.reek license.txt rdoc t.txt
Gemfile.lock docs integration pkg reek.txt
test.foorth
README.md fOOrth.gemspec lib rakefile.rb sire.rb tests

>)"git status"
On branch master
Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: docs/The_fOOrth_User_Guide.odt
 modified: lib/fOOrth/compiler.rb
 modified: lib/fOOrth/compiler/parser.rb

no changes added to commit (use "git add" and/or "git commit -a")

Note: This command can be used to do very naughty things to the host computer.

Page 329 of 354

[])classes []

Routing: VM

Generate a list of the classes in the system. For example:

>)classes
Array Fixnum Nil Queue True
Bignum Float Numeric Rational VirtualMachine
Class Hash Object Stack
Complex InStream OutStream String
False Integer Procedure Thread

[])context []

Routing: VM

Display the compiler context at execution of the)context command. See the section
Context for more details.

[])context! []

Routing: VM

Display the compiler context at compiling of the)context command. See the section
Context for more details.

Page 330 of 354

[])debug []

Routing: VM

This method activates debug mode in which greater detail of compiler activity is displayed.
For example:

>debug

>2 3 + 4 *
Tags=[:numeric] Code="vm.push(2); "
Tags=[:numeric] Code="vm.push(3); "
Tags=[:stub] Code="vm.swap_pop._016(vm); "
Tags=[:numeric] Code="vm.push(4); "
Tags=[:stub] Code="vm.swap_pop._018(vm); "

>: double dup + ;
Tags=[:immediate] Code="vm._085(vm); "
 begin_compile_mode
Tags=[:macro] Code="vm.push(vm.peek()); "
Tags=[:stub] Code="vm.swap_pop._016(vm); "
Tags=[:immediate] Code="vm.context[:_316].does.call(vm); "
double => lambda {|vm| vm.push(vm.peek()); vm.swap_pop._016(vm); }
 end_compile_mode

>5 double .
Tags=[:numeric] Code="vm.push(5); "
Tags=[] Code="vm._317(vm); "
Tags=[] Code="vm.pop._094(vm); "
10

This command is canceled by the)nodebug command.

[])elapsed []

Routing: VM

Display how much time has elapsed since the current virtual machine was started.

>)elapsed
Elapsed time is 606.454005 seconds

[])entries []

Routing: VM

Display the currently defined entries of the symbol table. See Appendix A for an example.

Page 331 of 354

[])globals []

Routing: VM

Display the currently defined global values and variables and the strings they map to.

>42 val$: $zz

>)globals
$zz (_304)

[])irb []

Routing: VM

Launch into an interactive Ruby debug session:

>)irb

Starting an IRB console for fOOrth.
Enter quit to return to fOOrth.

irb(main):001:0>

This command is canceled by the IRB quit command.

[])load" … " []

Routing: VM

Load the file named in the embedded string. This unlike load” this method provides user
feedback of the loading process.

>)load"docs/snippets/ugly_if"
Loading file: docs/snippets/ugly_if.foorth
Completed in 0.01 seconds

[])map" … " []

Routing: VM

Display the mapping information (if any) for the embedded string. See the section
Exploring the Mapping System above for more information.

Page 332 of 354

[])nodebug []

Routing: VM

Disable the debug mode described above.

[])noshow []

Routing: VM

Disable the show mode described below.

[])pry []

Routing: VM

Launch into an interactive Ruby debug session using the Pry gem:

>)pry

Starting an PRY console for fOOrth.
Enter quit to return to fOOrth.

[1] pry(main)>

This command is canceled by the Pry quit command.

[])quit []

Routing: VM

Exit the fOOrth language system:

>)quit

Quit command received. Exiting fOOrth.

C:\Sites\fOOrth>

[])restart []

Routing: VM

Reset the virtual machine start time to now.

Page 333 of 354

[])show []

Routing: VM

When this command is active, the contents of the stack are displayed after each command
is processed. This command is canceled by the)noshow command.

>)show

>1 2 3

[1 2 3]
>+ *

[5]

[])start []

Routing: VM

Display the start time of the virtual machine.

>)start
Start time is 2015-05-10 17:26:25 -0400

[])threads []

Routing: VM

Display the currently executing threads in the fOOrth system.

>)threads
#<Thread:0x1aec3b0> vm = <Main>

[])time []

Routing: VM

Display the current time.

>)time
It is now: 2015-05-10 at 05:35pm

[])unmap" … " []

Routing: VM

Display the reverse mapping information (if any) for the embedded string. See the section
Exploring the Mapping System above for more information.

Page 334 of 354

[])version []

Routing: VM

Display the version string of the fOOrth language system.

>)version
fOOrth language system version = 0.0.6

[])vm []

Routing: VM

Display a virtual machine dump at execution of the)vm command. See the section
Context for more details.

[])vm! []

Routing: VM

Display a virtual machine dump at compilation of the)vm! command. See the section
Context for more details.

[])words []

Routing: VM

Display the active methods defined for this virtual machine:

>)words
VirtualMachine Shared Methods =
!:)nodebug -infinity ?dup drop over true
")noshow .: [dup pause try
)")quit .:: accept e pi tuck
)classes)restart .dump accept" epsilon pick val#:
)context)show .elapsed begin false rational val$:
)context!)start .restart class: if rational! var#:
)debug)threads .start clear infinity rot var$:
)elapsed)time .subclass: clone load" self vm
)entries)unmap" .to_s complex max_float space {
)globals)version .vm_name copy min_float spaces {{
)irb)vm 2drop cr nan swap
)load")vm! 2dup do nil switch
)map")words : dpr nip throw"

Page 335 of 354

Page 336 of 354

Appendix A – Symbol Glossary

! .[]@ .current .midlr
!: .^left .d2r .min
" .^mid .day .minute
&& .^midlr .days .minutes
)" .^right .default .month
)classes .abs .default{{ .months
)context .accept .denominator .mutable?
)context! .acos .do{{ .name
)debug .acosh .dump .new
)elapsed .add .e** .new_default
)entries .alive? .each{{ .new_default{{
)globals .angle .elapsed_time .new_size
)irb .append .emit .new_value
)load" .append_all .empty? .new_values
)map" .append{{ .even? .new{{
)methods .as_days .exit .numerator
)nodebug .as_hours .floor .odd?
)noshow .as_local .fraction .offset
)pl .as_minutes .gather .open
)pry .as_months .gcd .open{{
)quit .as_seconds .get_all .p2c
)restart .as_utc .getc .parent_class
)set_pl .as_years .gets .peek
)show .as_zone .hour .peek_left
)start .asin .hours .peek_left!
)stubs .asinh .hypot .peek_right
)threads .atan .imaginary .peek_right!
)time .atan2 .init .pend
)unmap" .atanh .intervals .polar
)version .c2p .is_class? .pop
)vm .call .join .pop_left
)vm! .call_v .keys .pop_left!
)words .call_vx .labels .pop_right
* .call_with .largest_interval .pop_right!
** .call_x .lcm .posn
+ .cbrt .left .pp
- .ceil .left? .push
-infinity .check .length .push_left
. .check! .lines .push_left!
." .cjust .list .push_right
.+left .class .ljust .push_right!
.+mid .clear .ln .put_all
.+midlr .clone .load .r2d
.+right .clone_exclude .lock .rationalize_to
.-left .close .log10 .real
.-mid .conjugate .log2 .restart_timer
.-midlr .contains? .lstrip .reverse
.-right .copy .lstrip* .reverse*
.1/x .cos .magnitude .right
.10** .cosh .main .right?
.2** .cr .map{{ .rjust
.: .create .max .round
.:: .create{{ .mid .round_to
.[]! .cube .mid? .rstrip

Page 337 of 354

.rstrip* .to_t! Integer max_float

.run .to_upper Mutex min

.scatter .to_upper* Nil min_float

.sec_frac .to_x Numeric mod

.second .to_x! Object nan

.seconds .unlock OutStream neg

.select{{ .utc? Procedure nil

.shell .values Queue nil<>

.shell_out .vm Rational nil=

.shuffle .vm_name Stack nip

.sin .with{{ String not

.sinh .year StringBuffer now

.sleep .years SyncBundle or

.sort .yield Thread over

.space / Time p!"

.spaces 0< True p"

.split 0<= VirtualMachine parse

.sqr 0<=> [parse!

.sqrt 0<> ^^ pause

.start 0= _FILE_ pi

.start_named 0> a_day pick

.start_time 0>= a_minute rational

.status 1+ a_month rational!

.step 1- a_second rot

.strip 2* a_year self

.strip* 2+ accept space

.strlen 2- accept" spaces

.strmax 2/ an_hour swap

.strmax2 2drop and switch

.subclass: 2dup begin throw"

.tan : class: true

.tanh < clear try

.throw << clone tuck

.time_s <= com val#:

.to_a <=> complex val$:

.to_bundle <> copy var#:

.to_duration = cr var$:

.to_duration! > distinct? vm

.to_f >= do xor

.to_f! >> dpr yield

.to_fiber ?dup drop {

.to_h @ dup {{

.to_i Array e ||

.to_i! Bignum epsilon ~

.to_lower Bundle f" ~"

.to_lower* Class false ~cr

.to_n Complex format ~emit

.to_n! Duration gather ~getc

.to_r False identical? ~gets

.to_r! Fiber if ~space

.to_s Fixnum infinity ~spaces

.to_s* Float load"

.to_sync_bundle Hash local_offset

.to_t InStream max

Page 338 of 354

Appendix B – Regular Expressions

Elements of syntax in this guide are expressed using regular expressions. While regular
expressions are powerful and concise, they are also cryptic and non-intuitive. This
summary provides a brief overview of those subset of regular expression elements used in
this guide. It only provides a thread-bare overview of the subject of regular expressions and
the reader is encouraged to seek further information on this complex subject.175

Creating Regular Expressions:

Standard regex literal / … /<options>

Regex Options:

i Case insensitive pattern matching. Default is case sensitive.
m Multi-line mode: The special key “.” now also matches newlines.
x Extended mode: Spaces/newlines allowed to increase readability.

Special Keys:

. Any character except a newline (unless in mode m).
^ The beginning of the line or string
$ The ending of the line or string

\/.^$()[]<>|?*+ These characters require a \ prefix to appear as themselves in a
regular expression.

\A The beginning of the string.
\b A word boundary (outside of [] only)
\B Not a word boundary
\d A digit (0 through 9).
\D Not a digit
\h A hex digit (0 through 9, a through f, and A through F).
\H Not a hex digit

\s A white space character (including spaces, tabs, newlines,
carriage returns, and form feeds).

\S Not a white space character.
\w A word (“C” identifier) character.
\W Not a word character.
\xHH An encoded hexadecimal character value.
\z The end of the string.
\Z The end of the string or line.

175 For an excellent, interactive, free regular expression development tool see Rubular at http://rubular.com/

Page 339 of 354

http://rubular.com/

Grouping:

ab…z Sequence: Expressions a through z in sequence.
a|b|…z Alternation: One and only one of a or b or etc...
(e) An unnamed group. Also acts as an operator precedence modifier.

(?<name> …) Define a named sub-group. Typically tagged with {0}, see below.
\g<name> Invoke an named sub-group.
[…] Any character from the set of characters in the brackets.
[^ …] Any character not in the set of characters in the brackets.

Set Special Keys:

\] \\ \/ \- A “]”, “\”, “/”, or “-” character.
a-z A character range.
\b A backspace (0x08) character (inside a [] only).

Repetition:

r* Matches r zero or more times.
r*? Matches r zero or more times (non-greedy).
r+ Matches r one or more times.
r+? Matches r one or more times (non-greedy).
r? Matches r zero or one times.

r{M,N} Matches r M through N times.
r{M,N}? Matches r M through N times (non-greedy).
r{M,} Matches r M or more times.
r{,N} Matches r zero through N times.
r{N} Matches r exactly N times.

Peeking Outward:

(?= …) A positive look ahead, not part of the match.
(?! …) A negative look ahead, not part of the match.
(?<= …) A positive look behind, not part of the match.
(?<! …) A negative look behind, not part of the match.

Page 340 of 354

Appendix C – Git

The fOOrth project's source code is managed through the git source version management
system. Prior to version 0.0.4, all work, bug-fixes, updates, and improvements where all
done on the master branch. Moving forward, this is not a suitable model for further
development and a better, more manageable system is required.

The system adopted by the fOOrth project is that laid out in the blog “A successful Git
branching model176”. Under this model, the master branch is reserved for ready-to-deliver
code. All development efforts are shifted to the development branch.

Efforts of a short duration, like simple bug fixes, can be done directly on the development
branch. Those with a longer duration or more uncertain outcome should be branched from
the development branch with an appropriate descriptive name. These development
branches are merged177 back into the development branch or dropped as appropriate.

The development branch will be merged into the master branch to release new code. A
release branch may be employed if the release complexity warrants using one.

Hot-fixes branch from the master and merges to both the master and development
branches.

176 This may be found at: http://nvie.com/posts/a-successful-git-branching-model/
177 Git merges should always be done with the '--no-ff' option to avoid losing branch history information.

Page 341 of 354

http://nvie.com/posts/a-successful-git-branching-model/

Page 342 of 354

Appendix D – The fOOrth API

This section examines the internal access mechanisms for utilizing fOOrth in the context of
another program. In this context, fOOrth can be a scripting language, an extension, or the
target of debugging and testing.

For more information on running fOOrth from the command line, see the section Installation
– Running fOOrth above.

The XfOOrth module

The code of the fOOrth language system “lives” inside the ruby XfOOrth module. This
unusual name derives from the fact the Ruby module names must start with an uppercase
character while the nomenclature of fOOrth is that the “f” must be lowercase.

In addition, it is ruby convention that method names be lowercase only.

To arrive at a working compromise between fOOrth and Ruby, the following applies:

Use Issue Compromise Example

Module name
Module names must start with an upper-
case character.

XfOOrth XfOOrth::main

Method
names

Method names may not be mixed case. *_foorth_* to_foorth_s

XfOOrth::main

The standard entry point for the fOOrth language system is the traditionally name method
“main”. When run, it opens up an interactive session, allowing interaction with the
user/developer. It can be invoked quite simple as:

require 'fOOrth'
XfOOrth::main

Command Line Arguments

When the main method is used, it attempts to process any command line arguments. If
these are not intended for fOOrth, this may produce poor results. In that case, the
command line arguments should be cleared before calling the “main” method as shown
below:

require 'fOOrth'
ARGV.clear
XfOOrth::main

Page 343 of 354

For more information on supported command line arguments, see the section Installation –
Running fOOrth above.

Virtual Machine process_x

It is possible to have the fOOrth virtual machine process source code directly at the
command of the host program. This process involves three steps: Getting the current virtual
machine instance, using the appropriate API, and handling any exceptions.

Getting the current virtual machine

Most of the API entries listed here are processed by the fOOrth Virtual Machine object.
These objects have a one-to-one relationship with threads, so it is a bad idea to just use
VirtualMachine.new. It probably will not work. Instead use:

vm = XfOOrth::VirtualMachine.vm

Virtual Machine APIs

Once a virtual machine instance has been obtained, it can be used to execute some fOOrth
code. The following methods are available to do this:

VirtualMachine#process_console

Execute code interactively from the console (STDIN/STDOUT) attached to the process.
For the most part, this is the core method of the XfOOrth::main method, but that method
contains additional initialization, and exception handling code that is absent from this
method. For the vast majority of cases, it is recommended that XfOOrth::main be used
instead of this method.

Example:

vm = XfOOrth::VirtualMachine.vm
vm.reset.process_console

VirtualMachine#process_string(string)

Execute a string of fOOrth code.

Example:

vm = XfOOrth::VirtualMachine.vm
vm.reset.process_string('4 5 + .')

Page 344 of 354

VirtualMachine#process_file(full_file_name)

Given the name of a file, execute the fOOrth code contained therein.

Example:

vm = XfOOrth::VirtualMachine.vm.reset
vm.process_file('docs\snippets\times_table.foorth')

In addition, these methods are also of use by the host program:

VirtualMachine#data_stack and VirtualMachine#data_stack = array

This attribute allows access to the fOOrth data stack.

Note: The data stack of a virtual machine executing fOOrth code should never be modified
by another thread as this will very likely cause an error.

VirtualMachine#debug and VirtualMachine#debug = boolean

This attribute controls the debug setting of the virtual machine. Set to true and the
compiler will display details of the compiling process and the display_abort method will
show more details of any errors it processes.

Example:

vm = XfOOrth::VirtualMachine.vm.reset
vm.debug = true

Page 345 of 354

VirtualMachine#display_abort

This method, named after the procedure in FORTH that performs a similar purpose, is
used to process exceptions that are not “caught” by fOOrth code. In general, this involves
displaying information (via STDOUT) about the error and resting the virtual machine to a
known state. The amount of information displayed is controlled by the debug setting of the
virtual machine.

Note: It is vital that exceptions be processed by the same virtual machine instance that
generated them.

See Exceptions below for an example.

VirtualMachine#reset

Reset the virtual machine to a known state. This involves clearing the data stack and
resetting the compiler. This operation should always be done when am error occurs, but
can also be done to ensure a “clean slate” before fOOrth executing code.

Example:

vm = XfOOrth::VirtualMachine.vm.reset

Virtual Machine Access

The Ruby programmer also has access to some of the internal state of the virtual machine.
In particular, the data stack is available via the data_stack method. This is a simple array
that may be interrogated using standard ruby methods. Note that the Top-of-stack is the
last data element in the array.

Possible uses for this capability are:

• Loading the stack with parameters before calling fOOrth code.

• Retrieving results after calling fOOrth code.

Page 346 of 354

Exceptions

The execution of fOOrth code can result in the raising of Ruby exceptions. The caller of the
VirtualMachine process methods listed above is responsible for dealing with those
exceptions. The good news is that this is not an arduous task as illustrated below:

begin
 vm = XfOOrth::VirtualMachine.vm.reset
 vm.process_file('docs\snippets\times_table.foorth')
rescue StandardError => err
 vm.display_abort(err)
end

The corrective action shown above is to use the fOOrth error action which displays a
message on STDOUT and places the virtual machine back into a know state. Other actions,
or no action at all may be more appropriate depending on the application.

It should be noted that only StandardError (and its sub-classes) are rescued. I generally do
not recommend trying to rescue more serious errors as they generally do not have good
recovery prospects. The exception178 to that rule is the Interrupt exception, typically Control-
C being pressed, or some such.

178 No pun intended.

Page 347 of 354

Page 348 of 354

Index

0
0< 218
0<= 218
0<=> 219
0<> 219
0= 219
0> 219
0>= 220

1
1- 167, 220
1+ 167, 220

2
2- 168, 221
2* 167, 193, 220
2/ 168, 194, 221
2+ 167, 221
2drop 310
2dup 310

A
a_day 157, 312
a_minute 157, 312
a_month 157, 312
a_second 157, 312
a_year 158, 312
accept 57, 313
accept" 57, 313
again 37, 314
an_hour 158, 313
and 195
API 343
Archive 21
Array 115

B
begin 36, 314
Boolean 105
bounce 69pp., 326
break 324
Bundle 141

C
catch 68, 71, 326
Class 87, 145
class: 149, 315
clear 315
clone 53, 315
com 195
Commands 150, 329
complex 153, 315
Complex 151
console 57
copy 53, 316
cr 58, 316

D
data_stack 345

debug 345
Declarations 39
Demo.rb 20
display_abort 346
distinct? 233
do 35, 316
dpr 201, 318
drop 31, 318
Duck Typing 39
dup 31, 53, 318

E
e 202, 319
else 33, 320
end 324, 326
epsilon 202, 319
error 326

F
f" 65, 168, 233, 276, 303
false 319
False 105, 169
Fiber 171
finally 70, 71, 326
Float 175
fOOrth 19
format 65, 168, 233, 276, 303

G
gather 139, 319

H
Hash 179

I
i 35, 317
identical? 233
if 33, 319
infinity 202, 320
Inheritance 87
InStream 59, 187
Integer 191

J
j 35, 317
JSON 58

K
Known Issues 21

L
Late Binding 90
load" 320
local_offset 290
loop 35, 317

M
main 343
max 234
max_float 202, 320
Method Mapping 91
Methods 89

min 234
min_float 203, 320
mod 223
Multiple Nexus Programming 79
Mutation 42
Mutex 197

N
nan 203, 321
neg 223
nil 321
Nil 105, 199
nil<> 234
nil= 235
nip 31, 321
not 235
now 291
Numeric 107, 201

O
Object 105, 225
or 195
OutStream 60, 237
over 31, 321

P
p!" 65, 294
p" 65, 277, 295
parse 65, 277, 295
parse! 65, 295
pause 287, 321
pi 203, 321
pick 31, 322
Polymorphism 90
Procedure 243
process_console 344
process_file 345
process_string 344
Prototype 89

Q
Queue 249

R
Rake 20
rational 253, 322
Rational 251
rational! 253, 322
Referencing 41
repeat 37, 315
reset 346
rot 322
Routing 97
Ruby 12

S
Scoping 39
self 103, 323
space 58, 323

Page 349 of 354

spaces 58, 323
Stack 255
String 257
StringBuffer 279
super 146
swap 32, 323
switch 33, 324
SymbolMap 91
SyncBundle 283

T
Testing 21
Thanks 12
then 33, 320
Thread 285
throw" 72, 325
true 325
True 305
try 68, 71, 325
tuck 32, 327
Typing 39

U
until 37, 314

V
v 244
val: 40, 146, 244
val@: 40, 147
val#: 40, 327
val$: 40, 327
var: 40, 146, 244
var@: 40, 147
var#: 40, 328
var$: 40, 328
VirtualMachine 307
vm 328

W
while 314

X
x 244
XfOOrth 343
XML 58
xor 196

Y
yield 174

^
^^ 170, 199, 232

_
FILE 312

-
- 161, 204
-> 179p.
-i 35, 317
-infinity 201, 308
-j 35, 317

–
– 296

;
; 147

:
: 99, 311

!
! 119
!: 308

?
?" 69, 71, 326
?break 324
?dup 311

.
. 58, 62, 226, 239
.^left 125
.^mid 125
.^midlr 125
.^right 125
.-left 122, 265
.-mid 122, 266
.-midlr 123, 266
.-right 123, 266
.: 99, 145, 308
.:: 99, 226, 308
." 58, 264
.[]! 124, 182
.[]@ 124, 182
.+left 120, 264
.+mid 120, 265
.+midlr 121, 265
.+right 121, 265
.1/x 205
.10** 205
.2** 205
.abs 206
.accept 57, 266
.acos 206
.acosh 206
.add 143
.alive? 143, 172, 286
.angle 207
.append 62, 237
.append_all 61, 237
.append{{ 61, 238
.as_days 162
.as_hours 162
.as_local 296
.as_minutes 162
.as_months 162
.as_seconds 163
.as_utc 297
.as_years 163
.as_zone 297
.asin 207
.asinh 207
.atan 207
.atan2 208
.atanh 208
.c2p 208
.call 245, 267

.call_v 245

.call_vx 245

.call_with 245

.call_x 246

.cbrt 152, 208

.ceil 209

.check 147

.check! 147

.cjust 267

.class 227

.clear 249, 255

.clone 53, 227

.clone_exclude 55, 227

.close 60, 62, 188, 239

.conjugate 209

.contains? 267

.copy 53, 228

.cos 209

.cosh 209

.cr 62, 239

.create 62, 238

.create{{ 61, 238

.cube 210

.current 171, 285

.d2r 210

.day 297

.days 163

.default 182

.default{{ 183

.denominator 210

.do{{ 197p.

.dump 309

.e** 152, 210

.each{{ 126, 183, 267

.elapsed_time 309

.emit 58, 62, 211, 240, 268

.empty? 126, 183, 249, 255

.even? 192

.exit 286

.floor 211

.fraction 297

.gather 126, 192

.gcd 192

.get_all 59, 187

.getc 60, 188

.gets 60, 189

.hour 298

.hours 163

.hypot 211

.imaginary 211

.init 40, 228

.intervals 160

.is_class? 148, 228

.join 127, 192, 286

.keys 127, 184

.labels 161

.largest_interval 164

Page 350 of 354

.lcm 192

.left 127, 268

.left? 268

.length 128, 143, 184, 249, 255,
268
.lines 269
.list 285
.ljust 269
.ln 212
.load 269
.lock 198
.log10 212
.log2 212
.lstrip 269
.lstrip* 279
.magnitude 212
.main 285
.map{{ 128, 184
.max 128
.mid 129, 270
.mid? 270
.midlr 129, 270
.min 130
.minute 298
.minutes 164
.month 298
.months 164
.name 229
.new 117, 148, 181
.new_default 181
.new_default{{ 182
.new_size 118
.new_value 118
.new_values 119
.new{{ 118, 172, 286
.numerator 213
.odd? 193
.offset 298
.open 60, 187
.open{{ 59, 188
.p2c 213
.parent_class 148
.peek 256
.peek_left 130
.peek_left! 130
.peek_right 131
.peek_right! 131
.pend 250
.polar 213
.pop 250, 256
.pop_left 131
.pop_left! 132
.pop_right 132
.pop_right! 132
.posn 270
.pp 133, 185
.push 250, 256

.push_left 133

.push_left! 133

.push_right 133

.push_right! 134

.put_all 61, 239

.r2d 214

.rationalize_to 214, 254

.real 214

.restart_timer 309

.reverse 134, 271

.reverse* 279

.right 134, 271

.right? 271

.rjust 271

.round 214

.round_to 215

.rstrip 272

.rstrip* 280

.run 143

.scatter 134

.sec_frac 298

.second 299

.seconds 165

.select{{ 135, 185

.shell 272

.shell_out 272

.shuffle 135

.sin 215

.sinh 215

.sleep 215, 287

.sort 136

.space 62, 240

.spaces 62, 240

.split 135, 152, 251, 272

.sqr 216

.sqrt 152, 216

.start 246, 287

.start_named 246

.start_time 310

.status 144, 172, 287

.step 144, 172

.strip 273

.strip* 280

.strlen 229

.strmax 136

.strmax2 185

.subclass: 149, 309

.tan 216

.tanh 216

.throw 72, 273

.time_s 299

.to_a 136, 165, 186, 299

.to_bundle 136, 144, 246

.to_duration 137, 165, 229

.to_duration! 137, 166, 229

.to_f 176, 229

.to_f! 176, 230

.to_fiber 144, 173, 246

.to_h 137, 186

.to_i 193, 230

.to_i! 193, 230

.to_lower 273

.to_lower* 280

.to_n 217, 230

.to_n! 217, 230

.to_r 176, 230, 252

.to_r! 177, 230, 252

.to_s137, 149, 166, 186, 231, 273,
309
.to_s* 280
.to_sync_bundle 137, 283
.to_t 137, 216, 274, 300
.to_t! 137, 217, 274, 301
.to_upper 274
.to_upper* 281
.to_x 153, 231
.to_x! 153, 231
.unlock 198
.utc? 301
.values 138, 186
.vm 287
.vm_name 310
.with{{ 104, 231
.year 301
.years 166
.yield 173

"
" 308

)
)" 329
)classes 330
)context 93, 330
)context! 93, 330
)debug 331
)elapsed 331
)entries 331, 337
)globals 332
)irb 332
)load" 332
)map" 332
)methods 150, 236
)nodebug 333
)noshow 333
)pry 333
)quit 333
)restart 333
)show 334
)start 334
)stubs 150
)threads 334
)time 334
)unmap" 334
)version 335
)vm 96, 335

Page 351 of 354

)vm! 96, 335
)words 335

[
[116, 311

]
] 116

{
{ 179p., 329
{{ 243, 329

}
} 179p.
}} 244

@
@ 139

*
* 161, 203, 264

** 204
/

/ 167, 218
&

&& 169, 199, 225
+

+ 119, 161, 204, 264, 296
+loop 35, 318

<
< 221, 274, 302
<< 138, 194, 281
<= 222, 274, 302
<=> 222, 275, 302
<> 232

=
= 232

>
> 222, 275, 302
>= 223, 275, 303
>> 138, 195, 281

|
|| 170, 200, 235

~
~ 61, 240
~" 61, 240
~cr 61, 241
~emit 61, 241
~getc 59, 189
~gets 59, 189
~space 61, 241
~spaces 61, 241

Page 352 of 354

User Guide Release History:

PCC – December 14, 2014 – Initial draft started.

PCC – May 14, 2015 – V0.0.3

PCC – June 11, 2015 – V0.1.0

PCC – June 15, 2015 – V0.2.0

PCC – July 25, 2015 – V0.3.0

PCC – August 11, 2015 – V0.4.0

PCC – March 6, 2016 – V0.5.0

PCC – April 13, 2016 – V0.6.0

Page 353 of 354

– Stuff stored here for use throughout. Delete someday.

[before] word [after]

Routing: TOS

description

Code Result

Local Methods:

[before] word [after]

Routing: Compiler Context.

description

Code Result

Page 354 of 354

