mirror of
git://git.savannah.nongnu.org/eliot.git
synced 2025-01-13 20:03:23 +01:00
202 lines
5.1 KiB
TeX
202 lines
5.1 KiB
TeX
|
\documentclass[dvips]{article}
|
||
|
\usepackage{graphicx}
|
||
|
\usepackage{verbatim}
|
||
|
|
||
|
\title{Programming Eliot}
|
||
|
\date{\today}
|
||
|
\author{Antoine Fraboulet}
|
||
|
|
||
|
\newcommand{\boxbegin}[1]{%
|
||
|
\begin{center}%
|
||
|
\begin{small}%
|
||
|
\begin{tabular}{|p{#1}|}%
|
||
|
\hline%
|
||
|
\begin{minipage}{#1}%
|
||
|
\vspace*{0.3cm}%
|
||
|
}
|
||
|
|
||
|
\newcommand{\boxend}{%
|
||
|
\vspace*{0.05cm}
|
||
|
\end{minipage} \\
|
||
|
\hline
|
||
|
\end{tabular}
|
||
|
\end{small}
|
||
|
\end{center}
|
||
|
}
|
||
|
|
||
|
\begin{document}
|
||
|
\maketitle
|
||
|
|
||
|
\section{The Dictionary}
|
||
|
|
||
|
The dictionary is a directed tree. Compression is achieved by
|
||
|
sharing word prefix. Search is NOT case sensitive.
|
||
|
|
||
|
considering this 3 words dictionary:
|
||
|
|
||
|
\begin{verbatim}
|
||
|
ABC
|
||
|
ADA
|
||
|
EDAA
|
||
|
\end{verbatim}
|
||
|
|
||
|
The tree will look like this:
|
||
|
|
||
|
\begin{figure}[htb]
|
||
|
\begin{center}
|
||
|
% \begin{verbatim}
|
||
|
% root
|
||
|
% |
|
||
|
% A----------E!
|
||
|
% | |
|
||
|
% B----D! D!
|
||
|
% | | |
|
||
|
% C!* A!* A!
|
||
|
% | | |
|
||
|
% | | A!*
|
||
|
% | | |
|
||
|
% | | |
|
||
|
% ------------------- 0!* (sink)
|
||
|
% \end{verbatim}
|
||
|
\includegraphics[height=4cm]{dawg.eps}
|
||
|
\caption{Dictionary Directed Acyclic Word Graph}
|
||
|
\label{fig:dawg}
|
||
|
\end{center}
|
||
|
\end{figure}
|
||
|
|
||
|
\subsection{Binary Structure}
|
||
|
|
||
|
The tree is saved using an array of 32 bits words.
|
||
|
A cell is a binary structure
|
||
|
|
||
|
\begin{itemize}
|
||
|
\item ptr : index in the array of the first child
|
||
|
\item term : is it the last letter of a word (*)
|
||
|
\item last : is it the last child of its local root (!)
|
||
|
\item fill : currently unused
|
||
|
\item chr : the letter
|
||
|
\end{itemize}
|
||
|
|
||
|
There is no pointer from a cell to its brother, it is simply the
|
||
|
next cell in the array (you know you are on the last brother when
|
||
|
the flag "last" is set).
|
||
|
|
||
|
The way it is stored in a file is different thing! The tree is
|
||
|
stored bottom-up. The sink (offset 0) is the first cell of
|
||
|
the array.
|
||
|
|
||
|
Using compdict (which you can found in the eliot/dic directory),
|
||
|
the compiled dictionary will look like this:
|
||
|
|
||
|
compdict's console output:
|
||
|
|
||
|
\begin{small}
|
||
|
\begin{verbatim}
|
||
|
keyword length 21 bytes
|
||
|
keyword size 22 bytes
|
||
|
header size 48 bytes
|
||
|
|
||
|
3 words
|
||
|
|
||
|
root : 9 (edge)
|
||
|
root : 36 (byte)
|
||
|
|
||
|
nodes : 7+1
|
||
|
edges : 9+1
|
||
|
\end{verbatim}
|
||
|
\end{small}
|
||
|
|
||
|
binary view of the dictionary:
|
||
|
|
||
|
\begin{small}
|
||
|
\begin{verbatim}
|
||
|
0001 0203 0405 0607 0809 0a0b 0c0d 0e0f
|
||
|
00000000: 5f43 4f4d 5049 4c45 445f 4449 4354 494f _COMPILED_DICTIO
|
||
|
00000010: 4e41 5259 5f00 0000 0900 0000 0300 0000 NARY_...........
|
||
|
00000020: 0900 0000 0700 0000 0100 0000 0100 0000 ................
|
||
|
00000030: 0000 0002 0000 001b 0000 000b 0100 0010 ................
|
||
|
00000040: 0200 0022 0200 000a 0500 0022 0300 0008 ..."......."....
|
||
|
00000050: 0600 002a 0700 0000 ...*....
|
||
|
\end{verbatim}
|
||
|
\end{small}
|
||
|
|
||
|
The header structure is the following:
|
||
|
|
||
|
\begin{small}
|
||
|
\begin{verbatim}
|
||
|
#define _COMPIL_KEYWORD_ "_COMPILED_DICTIONARY_"
|
||
|
|
||
|
typedef struct _Dict_header {
|
||
|
char ident[sizeof(_COMPIL_KEYWORD_)]; // 0x00
|
||
|
char unused_1; // 0x16
|
||
|
char unused_2; // 0x17
|
||
|
int root; // 0x18
|
||
|
int nwords; // 0x1c
|
||
|
unsigned int edgesused; // 0x20
|
||
|
unsigned int nodesused; // 0x24
|
||
|
unsigned int nodessaved; // 0x2c
|
||
|
unsigned int edgessaved; // 0x28
|
||
|
} Dict_header;
|
||
|
\end{verbatim}
|
||
|
\end{small}
|
||
|
|
||
|
binary output of the header:
|
||
|
|
||
|
\begin{small}
|
||
|
\begin{verbatim}
|
||
|
0x00 ident : _COMPILED_DICTIONARY_
|
||
|
0x16 unused 1 : 0 00000000
|
||
|
0x17 unused 2 : 0 00000000
|
||
|
0x18 root : 9 00000009
|
||
|
0x1c words : 3 00000003
|
||
|
0x20 edges used : 9 00000009
|
||
|
0x24 nodes used : 7 00000007
|
||
|
0x28 nodes saved : 1 00000001
|
||
|
0x2c edges saved : 1 00000001
|
||
|
\end{verbatim}
|
||
|
\end{small}
|
||
|
|
||
|
The real array of data begins at offset 0x30. Integer are stored in a
|
||
|
machine dependent way. This dictionary was compiled on an i386 and is
|
||
|
not readable on a machine with a different endianess. The array is
|
||
|
stored 'as is' right after the header. Each array cell is a
|
||
|
bit-structure:
|
||
|
|
||
|
\begin{small}
|
||
|
\begin{verbatim}
|
||
|
typedef struct _Dawg_edge {
|
||
|
unsigned int ptr : 24;
|
||
|
unsigned int term : 1;
|
||
|
unsigned int last : 1;
|
||
|
unsigned int fill : 1; // reserved (currently unused)
|
||
|
unsigned int chr : 5;
|
||
|
} Dawg_edge;
|
||
|
\end{verbatim}
|
||
|
\end{small}
|
||
|
|
||
|
Characters are not stored in ASCII. The order is preserved but
|
||
|
we changed the values: A=1, B=2, ... This is very easy to do
|
||
|
with the ASCII table as \verb;('A' & 0x1f) == ('a' & 0x1f) == 1;.
|
||
|
This may not work on machines that are not using ASCII.
|
||
|
|
||
|
\begin{small}
|
||
|
\begin{verbatim}
|
||
|
offs binary structure
|
||
|
---- -------- | ------------------
|
||
|
0x00 02000000 | 0 ptr= 0 t=0 l=1 f=0 chr=0 (`)
|
||
|
0x04 1b000000 | 1 ptr= 0 t=1 l=1 f=0 chr=3 (c)
|
||
|
0x08 0b000000 | 2 ptr= 0 t=1 l=1 f=0 chr=1 (a)
|
||
|
0x0c 10000001 | 3 ptr= 1 t=0 l=0 f=0 chr=2 (b)
|
||
|
0x10 22000002 | 4 ptr= 2 t=0 l=1 f=0 chr=4 (d)
|
||
|
0x14 0a000002 | 5 ptr= 2 t=0 l=1 f=0 chr=1 (a)
|
||
|
0x18 22000005 | 6 ptr= 5 t=0 l=1 f=0 chr=4 (d)
|
||
|
0x1c 08000003 | 7 ptr= 3 t=0 l=0 f=0 chr=1 (a)
|
||
|
0x20 2a000006 | 8 ptr= 6 t=0 l=1 f=0 chr=5 (e)
|
||
|
0x24 00000007 | 9 ptr= 7 t=0 l=0 f=0 chr=0 (`)
|
||
|
\end{verbatim}
|
||
|
\end{small}
|
||
|
|
||
|
Strictly speaking, there is no node in the graph, only labelled edges.
|
||
|
|
||
|
\end{document}
|