arabica/include/XPath/impl/xpath_step.hpp

497 lines
20 KiB
C++

#ifndef ARABICA_XPATHIC_XPATH_STEP_H
#define ARABICA_XPATHIC_XPATH_STEP_H
#include <DOM/Document.hpp>
#include <algorithm>
#include "xpath_object.hpp"
#include "xpath_value.hpp"
#include "xpath_axis_enumerator.hpp"
#include "xpath_node_test.hpp"
#include "xpath_ast.hpp"
#include "xpath_ast_ids.hpp"
#include "xpath_namespace_context.hpp"
#include "xpath_compile_context.hpp"
namespace Arabica
{
namespace XPath
{
namespace impl
{
template<class string_type, class string_adaptor>
class StepExpression : public XPathExpression_impl<string_type, string_adaptor>
{
public:
StepExpression() { }
StepExpression(const std::vector<XPathExpression_impl<string_type, string_adaptor> *>& predicates) : predicates_(predicates) { }
virtual ~StepExpression()
{
for(typename std::vector<XPathExpression_impl<string_type, string_adaptor>*>::iterator p = predicates_.begin(), e = predicates_.end(); p != e; ++p)
delete *p;
} // ~StepExpression
virtual XPathValue<string_type, string_adaptor> evaluate(const DOM::Node<string_type, string_adaptor>& context, const ExecutionContext<string_type, string_adaptor>& executionContext) const = 0;
virtual XPathValue<string_type, string_adaptor> evaluate(NodeSet<string_type, string_adaptor>& context, const ExecutionContext<string_type, string_adaptor>& executionContext) const = 0;
bool has_predicates() const { return !predicates_.empty(); }
protected:
NodeSet<string_type, string_adaptor> applyPredicates(NodeSet<string_type, string_adaptor>& nodes, const ExecutionContext<string_type, string_adaptor>& parentContext) const
{
for(typename std::vector<XPathExpression_impl<string_type, string_adaptor>*>::const_iterator p = predicates_.begin(), e = predicates_.end();
(p != e) && (!nodes.empty()); ++p)
nodes = applyPredicate(nodes, *p, parentContext);
return nodes;
} // applyPredicates
private:
NodeSet<string_type, string_adaptor> applyPredicate(NodeSet<string_type, string_adaptor>& nodes,
XPathExpression_impl<string_type, string_adaptor>* predicate,
const ExecutionContext<string_type, string_adaptor>& parentContext) const
{
ExecutionContext<string_type, string_adaptor> executionContext(nodes.size(), parentContext);
NodeSet<string_type, string_adaptor> results(nodes.forward());
unsigned int position = 1;
for(typename NodeSet<string_type, string_adaptor>::iterator i = nodes.begin(); i != nodes.end(); ++i, ++position)
{
executionContext.setPosition(position);
XPathValue<string_type, string_adaptor> v = predicate->evaluate(*i, executionContext);
if((v.type() == NUMBER) && (position != v.asNumber()))
continue;
if(v.asBool() == false)
continue;
results.push_back(*i);
} // for ...
return results;
} // applyPredicate
std::vector<XPathExpression_impl<string_type, string_adaptor>*> predicates_;
}; // StepExpression
template<class string_type, class string_adaptor>
class TestStepExpression : public StepExpression<string_type, string_adaptor>
{
typedef StepExpression<string_type, string_adaptor> baseT;
public:
TestStepExpression(Axis axis, NodeTest<string_type, string_adaptor>* test) :
StepExpression<string_type, string_adaptor>(),
axis_(axis),
test_(test)
{
} // TestStepExpression
TestStepExpression(Axis axis, NodeTest<string_type, string_adaptor>* test,
const std::vector<XPathExpression_impl<string_type, string_adaptor>*>& predicates) :
StepExpression<string_type, string_adaptor>(predicates),
axis_(axis),
test_(test)
{
} // TestStepExpression
virtual ~TestStepExpression()
{
delete test_;
} // StepExpression
virtual XPathValue<string_type, string_adaptor> evaluate(const DOM::Node<string_type, string_adaptor>& context, const ExecutionContext<string_type, string_adaptor>& executionContext) const
{
NodeSet<string_type, string_adaptor> nodes;
enumerateOver(context, nodes, executionContext);
return XPathValue<string_type, string_adaptor>(new NodeSetValue<string_type, string_adaptor>(nodes));
} // evaluate
virtual XPathValue<string_type, string_adaptor> evaluate(NodeSet<string_type, string_adaptor>& context, const ExecutionContext<string_type, string_adaptor>& executionContext) const
{
NodeSet<string_type, string_adaptor> nodes;
for(typename NodeSet<string_type, string_adaptor>::iterator n = context.begin(); n != context.end(); ++n)
enumerateOver(*n, nodes, executionContext);
return XPathValue<string_type, string_adaptor>(new NodeSetValue<string_type, string_adaptor>(nodes));
} // evaluate
private:
void enumerateOver(const DOM::Node<string_type, string_adaptor>& context,
NodeSet<string_type, string_adaptor>& results,
const ExecutionContext<string_type, string_adaptor>& parentContext) const
{
AxisEnumerator<string_type, string_adaptor> enumerator(context, axis_);
results.forward(enumerator.forward());
NodeSet<string_type, string_adaptor> intermediate(enumerator.forward());
NodeSet<string_type, string_adaptor>& d = (!baseT::has_predicates()) ? results : intermediate;
while(*enumerator != 0)
{
// if test
DOM::Node<string_type, string_adaptor> node = *enumerator;
if((*test_)(node))
d.push_back(node);
++enumerator;
} // while ...
if(!baseT::has_predicates())
return;
intermediate = baseT::applyPredicates(intermediate, parentContext);
results.insert(results.end(), intermediate.begin(), intermediate.end());
} // enumerateOver
Axis axis_;
NodeTest<string_type, string_adaptor>* test_;
}; // class TestStepExpression
template<class string_type, class string_adaptor>
class ExprStepExpression : public StepExpression<string_type, string_adaptor>
{
typedef StepExpression<string_type, string_adaptor> baseT;
public:
ExprStepExpression(XPathExpression_impl<string_type, string_adaptor>* expr,
const std::vector<XPathExpression_impl<string_type, string_adaptor>*>& predicates) :
StepExpression<string_type, string_adaptor>(predicates),
expr_(expr)
{
} // ExprStepExpression
virtual ~ExprStepExpression()
{
delete expr_;
} // ExprStepExpression
virtual XPathValue<string_type, string_adaptor> evaluate(const DOM::Node<string_type, string_adaptor>& context, const ExecutionContext<string_type, string_adaptor>& executionContext) const
{
if(!baseT::has_predicates())
return expr_->evaluate(context, executionContext);
NodeSet<string_type, string_adaptor> ns = expr_->evaluate(context, executionContext).asNodeSet();
ns.to_document_order();
return XPathValue<string_type, string_adaptor>(new NodeSetValue<string_type, string_adaptor>(baseT::applyPredicates(ns, executionContext)));
} // evaluate
virtual XPathValue<string_type, string_adaptor> evaluate(NodeSet<string_type, string_adaptor>& context, const ExecutionContext<string_type, string_adaptor>& executionContext) const
{
DOM::Node<string_type, string_adaptor> c = context.top();
return evaluate(c, executionContext);
} // evaluate
private:
XPathExpression_impl<string_type, string_adaptor>* expr_;
std::vector<XPathExpression_impl<string_type, string_adaptor>*> predicates_;
}; // class ExprStepExpression
template<class string_type, class string_adaptor>
class StepFactory
{
public:
static StepExpression<string_type, string_adaptor>*
createStep(typename types<string_adaptor>::node_iter_t& node,
typename types<string_adaptor>::node_iter_t const& end,
CompilationContext<string_type, string_adaptor>& context)
{
Axis axis = getAxis(node);
return createStep(node, end, context, axis);
} // createStep
static StepExpression<string_type, string_adaptor>*
createStep(typename types<string_adaptor>::node_iter_t& node,
typename types<string_adaptor>::node_iter_t const& end,
CompilationContext<string_type, string_adaptor>& context,
Axis axis,
bool is_attr = false)
{
NodeTest<string_type, string_adaptor>* test = getTest(node, end, !is_attr ? axis : ATTRIBUTE, context.namespaceContext());
XPathExpression_impl<string_type, string_adaptor>* thing = 0;
if(!test)
thing = XPath<string_type, string_adaptor>::compile_expression(node++, end, context);
std::vector<XPathExpression_impl<string_type, string_adaptor>*> preds =
createPredicates(node, end, context);
if(!test)
return new ExprStepExpression<string_type, string_adaptor>(thing, preds);
return new TestStepExpression<string_type, string_adaptor>(axis, test, preds);
} // createStep
static StepExpression<string_type, string_adaptor>* createFilter(const typename types<string_adaptor>::node_iter_t& node,
CompilationContext<string_type, string_adaptor>& context)
{
typename types<string_adaptor>::node_iter_t c = node->children.begin();
typename types<string_adaptor>::node_iter_t const ce = node->children.end();
XPathExpression_impl<string_type, string_adaptor>* step = XPath<string_type, string_adaptor>::compile_expression(c, ce, context);
++c;
std::vector<XPathExpression_impl<string_type, string_adaptor>*> preds = createPredicates(c, ce, context);
return new ExprStepExpression<string_type, string_adaptor>(step, preds);
} // createFilter
static StepExpression<string_type, string_adaptor>* createSingleStep(typename types<string_adaptor>::node_iter_t& node,
typename types<string_adaptor>::node_iter_t const& end,
CompilationContext<string_type, string_adaptor>& context)
{
Axis axis = getAxis(node);
return createSingleStep(node, end, context, axis);
} // createStep
static StepExpression<string_type, string_adaptor>* createSingleStep(typename types<string_adaptor>::node_iter_t& node,
typename types<string_adaptor>::node_iter_t const& end,
CompilationContext<string_type, string_adaptor>& context,
Axis axis)
{
NodeTest<string_type, string_adaptor>* test = getTest(node, end, axis, context.namespaceContext());
return new TestStepExpression<string_type, string_adaptor>(axis, test);
return 0;
} // createStep
private:
static Axis getAxis(typename types<string_adaptor>::node_iter_t& node)
{
long id = getNodeId<string_adaptor>(node);
switch(id)
{
case impl::Slash_id:
case impl::SelfSelect_id:
return SELF; // don't advance node, SelfSelect is axis specifier and node test in one
case impl::ParentSelect_id:
return PARENT;
case impl::SlashSlash_id:
return DESCENDANT_OR_SELF;
case impl::AxisSpecifier_id:
{
typename types<string_adaptor>::node_iter_t axis_node = node->children.begin();
skipWhitespace<string_adaptor>(axis_node);
++node;
return getAxis(axis_node);
}
case impl::AbbreviatedAxisSpecifier_id:
case impl::Attribute_id:
++node;
return ATTRIBUTE;
case impl::AncestorOrSelf_id:
++node;
return ANCESTOR_OR_SELF;
case impl::Ancestor_id:
++node;
return ANCESTOR;
case impl::Child_id:
++node;
return CHILD;
case impl::DescendantOrSelf_id:
++node;
return DESCENDANT_OR_SELF;
case impl::Descendant_id:
++node;
return DESCENDANT;
case impl::FollowingSibling_id:
++node;
return FOLLOWING_SIBLING;
case impl::Following_id:
++node;
return FOLLOWING;
case impl::Namespace_id:
++node;
return NAMESPACE;
case impl::Parent_id:
++node;
return PARENT;
case impl::PrecedingSibling_id:
++node;
return PRECEDING_SIBLING;
case impl::Preceding_id:
++node;
return PRECEDING;
case impl::Self_id:
++node;
return SELF;
default:
return CHILD;
} // switch(id)
return CHILD;
} // getAxis
static std::vector<XPathExpression_impl<string_type, string_adaptor>*> createPredicates(typename types<string_adaptor>::node_iter_t& node,
typename types<string_adaptor>::node_iter_t const& end,
CompilationContext<string_type, string_adaptor>& context)
{
std::vector<XPathExpression_impl<string_type, string_adaptor>*> preds;
while((node != end) && (getNodeId<string_adaptor>(node) == impl::Predicate_id))
{
typename types<string_adaptor>::node_iter_t c = node->children.begin();
assert(getNodeId<string_adaptor>(c) == impl::LeftSquare_id);
++c;
preds.push_back(XPath<string_type, string_adaptor>::compile_expression(c, node->children.end(), context));
++c;
assert(getNodeId<string_adaptor>(c) == impl::RightSquare_id);
++node;
} // if ...
return preds;
} // createPredicates
static NodeTest<string_type, string_adaptor>* getTest(typename types<string_adaptor>::node_iter_t& node,
typename types<string_adaptor>::node_iter_t const& end,
Axis axis,
const NamespaceContext<string_type, string_adaptor>& namespaceContext)
{
long id = getNodeId<string_adaptor>(skipWhitespace<string_adaptor>(node));
switch(id)
{
case impl::NodeTest_id:
{
typename types<string_adaptor>::node_iter_t c = node->children.begin();
NodeTest<string_type, string_adaptor>* t = getTest(c, node->children.end(), axis, namespaceContext);
++node;
return t;
} // case NodeTest_id
case impl::QName_id:
{
typename types<string_adaptor>::node_iter_t c = node->children.begin();
string_type prefix = string_adaptor::construct(c->value.begin(), c->value.end());
string_type uri = namespaceContext.namespaceURI(prefix);
++c;
string_type name = string_adaptor::construct(c->value.begin(), c->value.end());
++node;
if(axis == ATTRIBUTE)
return new AttributeQNameNodeTest<string_type, string_adaptor>(uri, name);
return new QNameNodeTest<string_type, string_adaptor>(uri, name);
} //case QName_id
case impl::NCName_id:
{
string_type name = string_adaptor::construct(node->value.begin(), node->value.end());
++node;
if(axis == ATTRIBUTE)
return new AttributeNameNodeTest<string_type, string_adaptor>(name);
return new NameNodeTest<string_type, string_adaptor>(name);
} // case NameNodeTest
case impl::Comment_id:
{
++node;
return new CommentNodeTest<string_type, string_adaptor>();
} // case CommentTest_id
case impl::Text_id:
{
++node;
return new TextNodeTest<string_type, string_adaptor>();
} // case Text_id
case impl::ProcessingInstruction_id:
{
++node;
if((node == end) || (getNodeId<string_adaptor>(node) != impl::Literal_id))
return new ProcessingInstructionNodeTest<string_type, string_adaptor>();
string_type target = string_adaptor::construct(node->value.begin(), node->value.end());
++node;
return new ProcessingInstructionNodeTest<string_type, string_adaptor>(target);
} // case ProcessingInstruction_id
case impl::SlashSlash_id:
case impl::SelfSelect_id:
case impl::ParentSelect_id:
{
++node;
return new AnyNodeTest<string_type, string_adaptor>();
} // case Node_id
case impl::Node_id:
{
++node;
return new NodeNodeTest<string_type, string_adaptor>();
} // case Node_id
case impl::Slash_id:
return new RootNodeTest<string_type, string_adaptor>();
case impl::AnyName_id:
{
++node;
if(axis == ATTRIBUTE)
return new AttributeNodeTest<string_type, string_adaptor>();
return new StarNodeTest<string_type, string_adaptor>();
} // case AnyName_id:
case impl::NameTest_id:
{
typename types<string_adaptor>::node_iter_t prefixNode = node->children.begin();
++node;
string_type prefix = string_adaptor::construct(prefixNode->value.begin(), prefixNode->value.end());
string_type uri = namespaceContext.namespaceURI(prefix);
if(axis == ATTRIBUTE)
return new AttributeQStarNodeTest<string_type, string_adaptor>(uri);
return new QStarNodeTest<string_type, string_adaptor>(uri);
} // case
} // switch(id)
return 0;
} // getTest
StepFactory();
}; // class StepFactory
template<class string_type, class string_adaptor>
class RelativeLocationPath : public XPathExpression_impl<string_type, string_adaptor>
{
public:
RelativeLocationPath(StepExpression<string_type, string_adaptor>* step) : steps_() { steps_.push_back(step); }
RelativeLocationPath(const StepList<string_type, string_adaptor>& steps) : steps_(steps) { }
virtual ~RelativeLocationPath()
{
for(typename StepList<string_type, string_adaptor>::const_iterator i = steps_.begin(); i != steps_.end(); ++i)
delete *i;
} // ~RelativeLocationPath
virtual XPathValue<string_type, string_adaptor> evaluate(const DOM::Node<string_type, string_adaptor>& context, const ExecutionContext<string_type, string_adaptor>& executionContext) const
{
NodeSet<string_type, string_adaptor> nodes;
nodes.push_back(context);
for(typename StepList<string_type, string_adaptor>::const_iterator i = steps_.begin(); i != steps_.end(); ++i)
{
XPathValue<string_type, string_adaptor> v = (*i)->evaluate(nodes, executionContext);
nodes = v.asNodeSet();
} // for ...
nodes.sort();
return XPathValue<string_type, string_adaptor>(new NodeSetValue<string_type, string_adaptor>(nodes));
} // evaluate
private:
StepList<string_type, string_adaptor> steps_;
}; // RelativeLocationPath
template<class string_type, class string_adaptor>
class AbsoluteLocationPath : public RelativeLocationPath<string_type, string_adaptor>
{
public:
AbsoluteLocationPath(StepExpression<string_type, string_adaptor>* step) : RelativeLocationPath<string_type, string_adaptor>(step) { }
AbsoluteLocationPath(const StepList<string_type, string_adaptor>& steps) : RelativeLocationPath<string_type, string_adaptor>(steps) { }
virtual XPathValue<string_type, string_adaptor> evaluate(const DOM::Node<string_type, string_adaptor>& context, const ExecutionContext<string_type, string_adaptor>& executionContext) const
{
int type = context.getNodeType();
if((type == DOM::Node_base::DOCUMENT_NODE) ||
(type == DOM::Node_base::DOCUMENT_FRAGMENT_NODE))
return RelativeLocationPath<string_type, string_adaptor>::evaluate(context, executionContext);
DOM::Document<string_type, string_adaptor> document = context.getOwnerDocument();
return RelativeLocationPath<string_type, string_adaptor>::evaluate(document, executionContext);
} // evaluate
}; // class AbsoluteLocationPath
} // impl
} // XPath
} // Arabica
#endif