arabica/XPath/impl/xpath_step.hpp

417 lines
12 KiB
C++
Raw Normal View History

2005-08-04 22:42:30 +02:00
#ifndef ARABICA_XPATHIC_XPATH_STEP_H
#define ARABICA_XPATHIC_XPATH_STEP_H
#include <DOM/Document.h>
#include <algorithm>
#include "xpath_object.hpp"
#include "xpath_value.hpp"
#include "xpath_axis_enumerator.hpp"
#include "xpath_node_test.hpp"
#include "xpath_ast.hpp"
#include "xpath_ast_ids.hpp"
#include "xpath_namespace_context.hpp"
#include "xpath_compile_context.hpp"
namespace Arabica
{
namespace XPath
{
class StepExpression : public XPathExpression
{
public:
StepExpression() { }
StepExpression(std::vector<XPathExpression*> predicates) : predicates_(predicates) { }
virtual ~StepExpression()
{
for(std::vector<XPathExpression*>::iterator p = predicates_.begin(), e = predicates_.end(); p != e; ++p)
delete *p;
} // ~StepExpression
virtual XPathValuePtr evaluate(const DOM::Node<std::string>& context, const ExecutionContext& executionContext) const = 0;
virtual XPathValuePtr evaluate(NodeSet& context, const ExecutionContext& executionContext) const = 0;
bool has_predicates() const { return !predicates_.empty(); }
protected:
NodeSet applyPredicates(NodeSet& nodes, const ExecutionContext& parentContext) const
{
for(std::vector<XPathExpression*>::const_iterator p = predicates_.begin(), e = predicates_.end();
(p != e) && (!nodes.empty()); ++p)
nodes = applyPredicate(nodes, *p, parentContext);
return nodes;
} // applyPredicates
private:
NodeSet applyPredicate(NodeSet& nodes, XPathExpression* predicate, const ExecutionContext& parentContext) const
{
ExecutionContext executionContext(nodes.size(), parentContext);
NodeSet results(nodes.forward());
unsigned int position = 1;
for(NodeSet::iterator i = nodes.begin(); i != nodes.end(); ++i, ++position)
{
executionContext.setPosition(position);
XPathValuePtr v = predicate->evaluate(*i, executionContext);
if((v->type() == NUMBER) && (position != v->asNumber()))
continue;
if(v->asBool() == false)
continue;
results.push_back(*i);
} // for ...
return results;
} // applyPredicate
std::vector<XPathExpression*> predicates_;
}; // StepExpression
class TestStepExpression : public StepExpression
{
public:
TestStepExpression(Axis axis, NodeTest* test) :
StepExpression(),
axis_(axis),
test_(test)
{
} // TestStepExpression
TestStepExpression(Axis axis, NodeTest* test, std::vector<XPathExpression*> predicates) :
StepExpression(predicates),
axis_(axis),
test_(test)
{
} // TestStepExpression
virtual ~TestStepExpression()
{
delete test_;
} // StepExpression
virtual XPathValuePtr evaluate(const DOM::Node<std::string>& context, const ExecutionContext& executionContext) const
{
NodeSet nodes;
enumerateOver(context, nodes, executionContext);
return XPathValuePtr(new NodeSetValue(nodes));
} // evaluate
virtual XPathValuePtr evaluate(NodeSet& context, const ExecutionContext& executionContext) const
{
NodeSet nodes;
for(NodeSet::iterator n = context.begin(); n != context.end(); ++n)
enumerateOver(*n, nodes, executionContext);
return XPathValuePtr(new NodeSetValue(nodes));
} // evaluate
private:
void enumerateOver(const DOM::Node<std::string>& context, NodeSet& results,
const ExecutionContext& parentContext) const
{
AxisEnumerator enumerator(context, axis_);
NodeSet intermediate(enumerator.forward());
NodeSet& d = (!has_predicates()) ? results : intermediate;
while(*enumerator != 0)
{
// if test
DOM::Node<std::string> node = *enumerator;
if((*test_)(node))
d.push_back(node);
++enumerator;
} // while ...
if(!has_predicates())
{
results.forward(enumerator.forward());
return;
} // if ...
intermediate = applyPredicates(intermediate, parentContext);
results.swap(intermediate);
} // enumerateOver
Axis axis_;
NodeTest* test_;
}; // class TestStepExpression
class ExprStepExpression : public StepExpression
{
public:
ExprStepExpression(XPathExpression* expr, std::vector<XPathExpression*> predicates) :
StepExpression(predicates),
expr_(expr)
{
} // ExprStepExpression
virtual ~ExprStepExpression()
{
delete expr_;
} // ExprStepExpression
virtual XPathValuePtr evaluate(const DOM::Node<std::string>& context, const ExecutionContext& executionContext) const
{
if(!has_predicates())
return expr_->evaluate(context, executionContext);
NodeSet ns = expr_->evaluate(context, executionContext)->asNodeSet();
return XPathValuePtr(new NodeSetValue(applyPredicates(ns, executionContext)));
} // evaluate
virtual XPathValuePtr evaluate(NodeSet& context, const ExecutionContext& executionContext) const
{
DOM::Node<std::string> c = context.top();
return evaluate(c, executionContext);
} // evaluate
private:
XPathExpression* expr_;
std::vector<XPathExpression*> predicates_;
}; // class ExprStepExpression
class StepFactory
{
public:
static StepExpression* createStep(node_iter_t& node, node_iter_t const& end, CompilationContext& context)
{
Axis axis = getAxis(node);
NodeTest* test = getTest(node, context.namespaceContext());
XPathExpression* thing = 0;
if(!test)
thing = compile_expression(node++, context);
std::vector<XPathExpression*> preds;
while((node != end) && (getNodeId(node) == Predicate_id))
{
node_iter_t c = node->children.begin();
assert(getNodeId(c) == LeftSquare_id);
++c;
preds.push_back(compile_expression(c, context));
++c;
assert(getNodeId(c) == RightSquare_id);
++node;
} // if ...
if(!test)
return new ExprStepExpression(thing, preds);
return new TestStepExpression(axis, test, preds);
} // createStep
static StepExpression* createStep(node_iter_t& node, CompilationContext& context)
{
Axis axis = getAxis(node);
NodeTest* test = getTest(node, context.namespaceContext());
return new TestStepExpression(axis, test);
} // createStep
private:
static Axis getAxis(node_iter_t& node)
{
long id = getNodeId(node);
switch(id)
{
case Slash_id:
case SelfSelect_id:
return SELF; // don't advance node, SelfSelect is axis specifier and node test in one
case ParentSelect_id:
return PARENT;
case SlashSlash_id:
return DESCENDANT_OR_SELF;
case AbbreviatedAxisSpecifier_id:
++node;
return ATTRIBUTE;
case AxisSpecifier_id:
// skip on to the next bit
break;
default:
return CHILD;
} // switch(id)
node_iter_t axis_node = node->children.begin();
long axis = getNodeId(skipWhitespace(axis_node));
++node;
switch(axis)
{
case AncestorOrSelf_id:
return ANCESTOR_OR_SELF;
case Ancestor_id:
return ANCESTOR;
case AbbreviatedAxisSpecifier_id:
case Attribute_id:
return ATTRIBUTE;
case Child_id:
return CHILD;
case DescendantOrSelf_id:
return DESCENDANT_OR_SELF;
case Descendant_id:
return DESCENDANT;
case FollowingSibling_id:
return FOLLOWING_SIBLING;
case Following_id:
return FOLLOWING;
case Namespace_id:
return NAMESPACE;
case Parent_id:
return PARENT;
case PrecedingSibling_id:
return PRECEDING_SIBLING;
case Preceding_id:
return PRECEDING;
case Self_id:
return SELF;
} // switch ...
assert(false);
return CHILD;
} // getAxis
static NodeTest* getTest(node_iter_t& node, const NamespaceContext& namespaceContext)
{
long id = getNodeId(skipWhitespace(node));
switch(id)
{
case NodeTest_id:
{
node_iter_t c = node->children.begin();
NodeTest* t = getTest(c, namespaceContext);
++node;
return t;
} // case NodeTest_id
case QName_id:
{
node_iter_t c = node->children.begin();
std::string prefix(c->value.begin(), c->value.end());
std::string uri = namespaceContext.namespaceURI(prefix);
++c;
std::string name(c->value.begin(), c->value.end());
++node;
return new QNameNodeTest(uri, name);
} //case QName_id
case NCName_id:
{
std::string name(node->value.begin(), node->value.end());
++node;
return new NameNodeTest(name);
} // case NameNodeTest
case Comment_id:
{
++node;
return new CommentNodeTest();
} // case CommentTest_id
case Text_id:
{
++node;
return new TextNodeTest();
} // case Text_id
case ProcessingInstruction_id:
{
++node;
if(getNodeId(node) != Literal_id) // not sure if this is always safe
return new ProcessingInstructionNodeTest();
std::string target(node->value.begin(), node->value.end());
++node;
return new ProcessingInstructionNodeTest(target);
} // case ProcessingInstruction_id
case SlashSlash_id:
case Node_id:
{
++node;
return new AnyNodeTest();
} // case Node_id
case Slash_id:
return new RootNodeTest();
case AnyName_id:
case SelfSelect_id:
case ParentSelect_id:
{
++node;
return new StarNodeTest();
} // case AnyName_id:
case NameTest_id:
{
node_iter_t prefixNode = node->children.begin();
++node;
std::string prefix(prefixNode->value.begin(), prefixNode->value.end());
std::string uri = namespaceContext.namespaceURI(prefix);
return new QStarNodeTest(uri);
} // case
} // switch(id)
return 0;
} // getTest
StepFactory();
}; // class StepFactory
class RelativeLocationPath : public XPathExpression
{
public:
typedef std::vector<StepExpression*> StepList;
public:
RelativeLocationPath(StepExpression* step) : steps_() { steps_.push_back(step); }
RelativeLocationPath(const StepList& steps) : steps_(steps) { }
virtual ~RelativeLocationPath()
{
for(StepList::const_iterator i = steps_.begin(); i != steps_.end(); ++i)
delete *i;
} // ~LocationPath
virtual XPathValuePtr evaluate(const DOM::Node<std::string>& context, const ExecutionContext& executionContext) const
{
NodeSet nodes;
nodes.push_back(context);
for(StepList::const_iterator i = steps_.begin(); i != steps_.end(); ++i)
{
XPathValuePtr v = (*i)->evaluate(nodes, executionContext);
nodes = v->asNodeSet();
} // for ...
return XPathValuePtr(new NodeSetValue(nodes));
} // do_evaluate
private:
StepList steps_;
}; // LocationPath
class AbsoluteLocationPath : public RelativeLocationPath
{
public:
AbsoluteLocationPath(StepExpression* step) : RelativeLocationPath(step) { }
AbsoluteLocationPath(const RelativeLocationPath::StepList& steps) : RelativeLocationPath(steps) { }
virtual XPathValuePtr evaluate(const DOM::Node<std::string>& context, const ExecutionContext& executionContext) const
{
int type = context.getNodeType();
if((type == DOM::Node<std::string>::DOCUMENT_NODE) ||
(type == DOM::Node<std::string>::DOCUMENT_FRAGMENT_NODE))
return RelativeLocationPath::evaluate(context, executionContext);
DOM::Document<std::string> document = context.getOwnerDocument();
return RelativeLocationPath::evaluate(document, executionContext);
} // evaluate
}; // class AbsoluteLocationPath
} // XPath
} // Arabica
#endif