mirror of
https://github.com/TheAlgorithms/Ruby
synced 2025-01-13 08:01:03 +01:00
65 lines
1.4 KiB
Ruby
65 lines
1.4 KiB
Ruby
# You are climbing a staircase. It takes n steps to reach the top.
|
|
# Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
|
|
|
|
# Example 1:
|
|
# Input: n = 2
|
|
# Output: 2
|
|
# Explanation: There are two ways to climb to the top.
|
|
# 1. 1 step + 1 step
|
|
# 2. 2 steps
|
|
|
|
# Example 2:
|
|
# Input: n = 3
|
|
# Output: 3
|
|
# Explanation: There are three ways to climb to the top.
|
|
# 1. 1 step + 1 step + 1 step
|
|
# 2. 1 step + 2 steps
|
|
# 3. 2 steps + 1 step
|
|
|
|
# Constraints:
|
|
# 1 <= n <= 45
|
|
|
|
# Dynamic Programming, Recursive Bottom Up Approach - O(n) Time / O(n) Space
|
|
# Init memoization hash (only 1 parameter)
|
|
# Set base cases which are memo[0] = 1 and memo[1] = 1, since there are only 1 way to get to each stair
|
|
# Iterate from 2..n and call recurse(n, memo) for each value n.
|
|
# Return memo[n].
|
|
|
|
# recurse(n, memo) - Recurrence Relation is n = (n - 1) + (n - 2)
|
|
# return memo[n] if memo[n] exists.
|
|
# otherwise, memo[n] = recurse(n - 1, memo) + recurse(n - 2, memo)
|
|
|
|
# @param {Integer} n
|
|
# @return {Integer}
|
|
def climb_stairs(n)
|
|
memo = {}
|
|
|
|
memo[0] = 1
|
|
memo[1] = 1
|
|
|
|
return memo[n] if [0, 1].include?(n)
|
|
|
|
(2..n).each do |n|
|
|
recurse(n, memo)
|
|
end
|
|
|
|
memo[n]
|
|
end
|
|
|
|
def recurse(n, memo)
|
|
return memo[n] if memo[n]
|
|
|
|
memo[n] = recurse(n - 1, memo) + recurse(n - 2, memo)
|
|
end
|
|
|
|
puts climb_stairs(2)
|
|
# => 2
|
|
|
|
puts climb_stairs(4)
|
|
# => 5
|
|
|
|
puts climb_stairs(10)
|
|
# => 89
|
|
|
|
puts climb_stairs(45)
|
|
# => 1836311903
|