mirror of
https://github.com/TheAlgorithms/Ruby
synced 2025-01-14 08:01:05 +01:00
5c1580fc10
Co-authored-by: Vitor Oliveira <vbrazo@gmail.com>
125 lines
2.3 KiB
Ruby
125 lines
2.3 KiB
Ruby
# Challenge name: Intersection of two arrays ii
|
|
#
|
|
# Given two arrays, write a function to compute their intersection.
|
|
#
|
|
# @param {Integer[]} nums1
|
|
# @param {Integer[]} nums2
|
|
# @return {Integer[]}
|
|
|
|
#
|
|
# Approach 1: Brute Force
|
|
#
|
|
# Time Complexity: O(n^2)
|
|
#
|
|
def intersect(arr1, arr2)
|
|
result = []
|
|
|
|
if arr1.length < arr2.length
|
|
shorter = arr1
|
|
longer = arr2
|
|
else
|
|
shorter = arr2
|
|
longer = arr1
|
|
end
|
|
|
|
shorter.each do |matcher|
|
|
longer.each do |number|
|
|
next if number != matcher
|
|
result.push(number)
|
|
break
|
|
end
|
|
end
|
|
|
|
result
|
|
end
|
|
|
|
nums1 = [1, 2, 2, 1]
|
|
nums2 = [2, 2]
|
|
puts intersect(nums1, nums2)
|
|
# => [2,2]
|
|
|
|
nums1 = [4, 9, 5]
|
|
nums2 = [9, 4, 9, 8, 4]
|
|
puts intersect(nums1, nums2)
|
|
# => [4,9]
|
|
|
|
#
|
|
# Approach 2: Hash
|
|
#
|
|
# Complexity Analysis
|
|
#
|
|
# Time Complexity: O(n+m), where n and m are the lengths of the arrays.
|
|
# We iterate through the first, and then through the second array; insert
|
|
# and lookup operations in the hash map take a constant time.
|
|
#
|
|
# Space Complexity: O(min(n,m)). We use hash map to store numbers (and their
|
|
# counts) from the smaller array.
|
|
#
|
|
def intersect(arr1, arr2)
|
|
result = []
|
|
|
|
hash = Hash.new(0)
|
|
|
|
arr2.each {|num| hash[num] += 1 }
|
|
|
|
arr1.each do |num|
|
|
if hash.has_key?(num)
|
|
result << num if hash[num] >= 1
|
|
hash[num] -= 1
|
|
end
|
|
end
|
|
|
|
result
|
|
end
|
|
|
|
nums1 = [1, 2, 2, 1]
|
|
nums2 = [2, 2]
|
|
puts intersect(nums1, nums2)
|
|
# => [2,2]
|
|
|
|
nums1 = [4, 9, 5]
|
|
nums2 = [9, 4, 9, 8, 4]
|
|
puts intersect(nums1, nums2)
|
|
# => [4,9]
|
|
|
|
#
|
|
# Approach 3: Two Pointers
|
|
#
|
|
# Complexity analysis:
|
|
|
|
# Time Complexity: O(nlogn + mlogm), where n and m are the lengths of the arrays. We sort two arrays independently and then do a linear scan.
|
|
# Space Complexity: from O(logn+logm) to O(n+m), depending on the implementation of the sorting algorithm.
|
|
#
|
|
def intersect(nums1, nums2)
|
|
result = []
|
|
p1 = 0
|
|
p2 = 0
|
|
nums1 = nums1.sort
|
|
nums2 = nums2.sort
|
|
while p1 < nums1.length && p2 < nums2.length
|
|
if nums1[p1] < nums2[p2]
|
|
p1 += 1
|
|
elsif nums1[p1] > nums2[p2]
|
|
p2 += 1
|
|
elsif nums1[p1] == nums2[p2]
|
|
result << nums1[p1]
|
|
p1 += 1
|
|
p2 += 1
|
|
end
|
|
end
|
|
|
|
result
|
|
end
|
|
nums1 = [1, 2, 2, 1]
|
|
nums2 = [2, 2]
|
|
intersect(nums1, nums2)
|
|
|
|
nums1 = [1, 2, 2, 1]
|
|
nums2 = [2, 2]
|
|
puts intersect(nums1, nums2)
|
|
# => [2,2]
|
|
|
|
nums1 = [4, 9, 5]
|
|
nums2 = [9, 4, 9, 8, 4]
|
|
puts intersect(nums1, nums2)
|
|
# => [4,9]
|