TheAlgorithms-Ruby/dynamic_programming/pascal_triangle_ii.rb
2021-06-08 11:30:17 -07:00

119 lines
1.9 KiB
Ruby

# Given an integer row_index, return the rowIndexth (0-indexed) row of the Pascal's triangle.
# Example 1:
#
# Input: row_index = 3
# Output: [1,3,3,1]
#
# Example 2:
#
# Input: row_index = 0
# Output: [1]
#
# Example 3:
#
# Input: row_index = 1
# Output: [1,1]
#
# Approach 1: Brute Force
#
# Complexity Analysis
#
# Time complexity: O(k^2).
# Space complexity: O(k) + O(k) ~ O(k)
def get_num(row, col)
return 1 if row == 0 || col == 0 || row == col
get_num(row - 1, col - 1) + get_num(row - 1, col)
end
def get_row(row_index)
result = []
(row_index + 1).times do |i|
result.push(get_num(row_index, i))
end
result
end
row_index = 3
print(get_row(row_index))
# => [1,3,3,1]
row_index = 0
print(get_row(row_index))
# => [1]
row_index = 1
print(get_row(row_index))
# => [1,1]
#
# Approach 2: Dynamic Programming
#
# Complexity Analysis
#
# Time complexity: O(k^2).
# Space complexity: O(k) + O(k) ~ O(k).
# @param {Integer} row_index
# @return {Integer[]}
def get_row(row_index)
result = generate(row_index)
result[result.count - 1]
end
def generate(num_rows)
return [[1]] if num_rows < 1
result = [[1], [1, 1]]
(2...num_rows + 1).each do |row|
prev = result[row - 1]
current = [1]
med = prev.count / 2
(1...prev.count).each do |i|
current[i] = prev[i - 1] + prev[i]
end
current.push(1)
result.push(current)
end
result
end
#
# Approach 3: Memory-efficient Dynamic Programming
#
# Complexity Analysis
#
# Time complexity: O(k^2).
# Space complexity: O(k).
# @param {Integer} row_index
# @return {Integer[]}
def get_row(row_index)
pascal = [[1]]
(1..row_index).each do |i|
pascal[i] = []
pascal[i][0] = pascal[i][i] = 1
(1...i).each do |j|
pascal[i][j] = pascal[i - 1][j - 1] + pascal[i - 1][j]
end
end
pascal[row_index]
end
row_index = 3
print(get_row(row_index))
# => [1,3,3,1]
row_index = 0
print(get_row(row_index))
# => [1]
row_index = 1
print(get_row(row_index))
# => [1,1]