mirror of
https://github.com/TheAlgorithms/Ruby
synced 2024-12-26 21:58:56 +01:00
138 lines
2.1 KiB
Ruby
138 lines
2.1 KiB
Ruby
# Given an integer row_index, return the rowIndexth (0-indexed) row of the Pascal's triangle.
|
|
# Example 1:
|
|
#
|
|
# Input: row_index = 3
|
|
# Output: [1,3,3,1]
|
|
#
|
|
# Example 2:
|
|
#
|
|
# Input: row_index = 0
|
|
# Output: [1]
|
|
#
|
|
# Example 3:
|
|
#
|
|
# Input: row_index = 1
|
|
# Output: [1,1]
|
|
|
|
#
|
|
# Approach 1: Brute Force
|
|
#
|
|
|
|
# Complexity Analysis
|
|
#
|
|
# Time complexity: O(k^2).
|
|
# Space complexity: O(k) + O(k) ~ O(k)
|
|
|
|
def get_num(row, col)
|
|
return 1 if row == 0 || col == 0 || row == col
|
|
|
|
get_num(row - 1, col - 1) + get_num(row - 1, col)
|
|
end
|
|
|
|
def get_row(row_index)
|
|
result = []
|
|
|
|
(row_index + 1).times do |i|
|
|
result.push(get_num(row_index, i))
|
|
end
|
|
|
|
result
|
|
end
|
|
|
|
row_index = 3
|
|
print(get_row(row_index))
|
|
# => [1,3,3,1]
|
|
|
|
row_index = 0
|
|
print(get_row(row_index))
|
|
# => [1]
|
|
|
|
row_index = 1
|
|
print(get_row(row_index))
|
|
# => [1,1]
|
|
|
|
#
|
|
# Approach 2: Dynamic Programming
|
|
#
|
|
|
|
# Complexity Analysis
|
|
#
|
|
# Time complexity: O(k^2).
|
|
# Space complexity: O(k) + O(k) ~ O(k).
|
|
|
|
# @param {Integer} row_index
|
|
# @return {Integer[]}
|
|
def get_row(row_index)
|
|
result = generate(row_index)
|
|
result[result.count - 1]
|
|
end
|
|
|
|
def generate(num_rows)
|
|
return [[1]] if num_rows < 1
|
|
result = [[1], [1, 1]]
|
|
|
|
(2...num_rows + 1).each do |row|
|
|
prev = result[row - 1]
|
|
current = [1]
|
|
med = prev.count / 2
|
|
|
|
(1...prev.count).each do |i|
|
|
current[i] = prev[i - 1] + prev[i]
|
|
end
|
|
|
|
current.push(1)
|
|
result.push(current)
|
|
end
|
|
|
|
result
|
|
end
|
|
|
|
row_index = 3
|
|
print(get_row(row_index))
|
|
# => [1,3,3,1]
|
|
|
|
row_index = 0
|
|
print(get_row(row_index))
|
|
# => [1]
|
|
|
|
row_index = 1
|
|
print(get_row(row_index))
|
|
# => [1,1]
|
|
|
|
#
|
|
# Approach 3: Memory-efficient Dynamic Programming
|
|
#
|
|
|
|
# Complexity Analysis
|
|
#
|
|
# Time complexity: O(k^2).
|
|
# Space complexity: O(k).
|
|
|
|
# @param {Integer} row_index
|
|
# @return {Integer[]}
|
|
def get_row(row_index)
|
|
pascal = [[1]]
|
|
|
|
(1..row_index).each do |i|
|
|
pascal[i] = []
|
|
pascal[i][0] = pascal[i][i] = 1
|
|
|
|
(1...i).each do |j|
|
|
pascal[i][j] = pascal[i - 1][j - 1] + pascal[i - 1][j]
|
|
end
|
|
end
|
|
|
|
pascal[row_index]
|
|
end
|
|
|
|
row_index = 3
|
|
print(get_row(row_index))
|
|
# => [1,3,3,1]
|
|
|
|
row_index = 0
|
|
print(get_row(row_index))
|
|
# => [1]
|
|
|
|
row_index = 1
|
|
print(get_row(row_index))
|
|
# => [1,1]
|