# Challenge name: Intersection of two arrays ii # # Given two arrays, write a function to compute their intersection. # # @param {Integer[]} nums1 # @param {Integer[]} nums2 # @return {Integer[]} # # Approach 1: Brute Force # # Time Complexity: O(n^2) # def intersect(arr1, arr2) result = [] if arr1.length < arr2.length shorter = arr1 longer = arr2 else shorter = arr2 longer = arr1 end shorter.each do |matcher| longer.each do |number| next if number != matcher result.push(number) break end end result end nums1 = [1, 2, 2, 1] nums2 = [2, 2] puts intersect(nums1, nums2) # => [2,2] nums1 = [4, 9, 5] nums2 = [9, 4, 9, 8, 4] puts intersect(nums1, nums2) # => [4,9] # # Approach 2: Hash # # Time Complexity: O(n) # def intersect(arr1, arr2) result = [] hash = Hash.new(0) arr2.each {|num| hash[num] += 1 } arr1.each do |num| if hash.has_key?(num) result << num if hash[num] >= 1 hash[num] -= 1 end end result end nums1 = [1, 2, 2, 1] nums2 = [2, 2] puts intersect(nums1, nums2) # => [2,2] nums1 = [4, 9, 5] nums2 = [9, 4, 9, 8, 4] puts intersect(nums1, nums2) # => [4,9] # # Approach 3: Two Pointers # # Complexity analysis: # Time Complexity: O(nlogn + mlogm), where n and m are the lengths of the arrays. We sort two arrays independently and then do a linear scan. # Space Complexity: from O(logn+logm) to O(n+m), depending on the implementation of the sorting algorithm. # def intersect(nums1, nums2) result = [] p1 = 0 p2 = 0 nums1 = nums1.sort nums2 = nums2.sort while p1 < nums1.length && p2 < nums2.length if nums1[p1] < nums2[p2] p1 += 1 elsif nums1[p1] > nums2[p2] p2 += 1 elsif nums1[p1] == nums2[p2] result << nums1[p1] p1 += 1 p2 += 1 end end result end nums1 = [1, 2, 2, 1] nums2 = [2, 2] intersect(nums1, nums2) nums1 = [1, 2, 2, 1] nums2 = [2, 2] puts intersect(nums1, nums2) # => [2,2] nums1 = [4, 9, 5] nums2 = [9, 4, 9, 8, 4] puts intersect(nums1, nums2) # => [4,9]