#Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. #A subarray is a contiguous part of an array. #Example 1: #Input: nums = [-2,1,-3,4,-1,2,1,-5,4] #Output: 6 #Explanation: [4,-1,2,1] has the largest sum = 6. #Example 2: #Input: nums = [1] #Output: 1 #Example 3: #Input: nums = [5,4,-1,7,8] #Output: 23 #Constraints: #1 <= nums.length <= 3 * 104 #-105 <= nums[i] <= 105 #Dynamic Programming Approach (Kadane's Algorithm) - O(n) Time / O(1) Space #Init max_sum as first element #Return first element if the array length is 1 #Init current_sum as 0 #Iterate through the array: #if current_sum < 0, then reset it to 0 (to eliminate any negative prefixes) #current_sum += num #max_sum = current_sum if current_sum is greater than max_sum #Return max_sum # @param {Integer[]} nums # @return {Integer} def max_sub_array(nums) #initialize max sum to first number max_sum = nums[0] #return first number if array length is 1 return max_sum if nums.length == 1 #init current sum to 0 current_sum = 0 #iterate through array, reset current_sum to 0 if it ever goes below 0, track max_sum with highest current_sum nums.each do |num| current_sum = 0 if current_sum < 0 current_sum += num max_sum = [max_sum, current_sum].max end #return answer max_sum end