# Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum. # A subarray is a contiguous part of an array. # Example 1: # Input: nums = [-2,1,-3,4,-1,2,1,-5,4] # Output: 6 # Explanation: [4,-1,2,1] has the largest sum = 6. # Example 2: # Input: nums = [1] # Output: 1 # Example 3: # Input: nums = [5,4,-1,7,8] # Output: 23 # Constraints: # 1 <= nums.length <= 3 * 104 # -105 <= nums[i] <= 105 # Dynamic Programming Approach (Kadane's Algorithm) - O(n) Time / O(1) Space # # Init max_sum as first element # Return first element if the array length is 1 # Init current_sum as 0 # Iterate through the array: # if current_sum < 0, then reset it to 0 (to eliminate any negative prefixes) # current_sum += num # max_sum = current_sum if current_sum is greater than max_sum # Return max_sum # @param {Integer[]} nums # @return {Integer} def max_sub_array(nums) # initialize max sum to first number max_sum = nums[0] # return first number if array length is 1 return max_sum if nums.length == 1 # init current sum to 0 current_sum = 0 # iterate through array, reset current_sum to 0 if it ever goes below 0, track max_sum with highest current_sum nums.each do |num| current_sum = 0 if current_sum < 0 current_sum += num max_sum = [max_sum, current_sum].max end max_sum end nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print max_sub_array(nums) # Output: 6 nums = [1] print max_sub_array(nums) # Output: 1 nums = [5, 4, -1, 7, 8] print max_sub_array(nums) # Output: 23