mirror of
https://github.com/TheAlgorithms/Ruby
synced 2024-12-26 21:58:56 +01:00
Use .count as standard
This commit is contained in:
parent
32706822fa
commit
f072feacff
1 changed files with 5 additions and 5 deletions
|
@ -17,7 +17,7 @@
|
|||
# 1. Brute force solution
|
||||
#
|
||||
def calculate_products_of_all_other_elements(nums)
|
||||
product_of_other_elements = Array.new(nums.length, 1)
|
||||
product_of_other_elements = Array.new(nums.count, 1)
|
||||
|
||||
nums.count.times do |i|
|
||||
nums.count.times do |j|
|
||||
|
@ -90,7 +90,7 @@ def output(prefix_products, suffix_products, nums)
|
|||
nums.count.times do |index|
|
||||
result << if index == 0
|
||||
suffix_products[index + 1]
|
||||
elsif index == nums.length - 1
|
||||
elsif index == nums.count - 1
|
||||
prefix_products[index - 1]
|
||||
else
|
||||
(prefix_products[index - 1] * suffix_products[index + 1])
|
||||
|
@ -131,14 +131,14 @@ puts(products([1, 2, 3]))
|
|||
# array doesn't add to the space complexity.
|
||||
|
||||
def products(nums)
|
||||
return [] if nums.size < 2
|
||||
return [] if nums.count < 2
|
||||
|
||||
res = [1]
|
||||
|
||||
# res[i] contains the product of all the elements to the left
|
||||
# Note: for the element at index '0', there are no elements to the left,
|
||||
# so the res[0] would be 1
|
||||
(0..(nums.size - 2)).each do |i|
|
||||
(0..(nums.count - 2)).each do |i|
|
||||
num = nums[i]
|
||||
res << num * res[i]
|
||||
end
|
||||
|
@ -148,7 +148,7 @@ def products(nums)
|
|||
# so the product would be 1
|
||||
product = 1
|
||||
|
||||
(nums.size - 1).downto(1).each do |i|
|
||||
(nums.count - 1).downto(1).each do |i|
|
||||
num = nums[i]
|
||||
# For the index 'i', product would contain the
|
||||
# product of all elements to the right. We update product accordingly.
|
||||
|
|
Loading…
Reference in a new issue