mirror of
https://github.com/TheAlgorithms/Ruby
synced 2025-01-13 08:01:03 +01:00
Add array solutions with descriptions
This commit is contained in:
parent
02db2b9550
commit
e676e283ea
3 changed files with 180 additions and 0 deletions
80
data_structures/arrays/3sum.rb
Normal file
80
data_structures/arrays/3sum.rb
Normal file
|
@ -0,0 +1,80 @@
|
|||
#Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] ..
|
||||
#.. such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.
|
||||
#Notice that the solution set must not contain duplicate triplets.
|
||||
|
||||
#Example 1:
|
||||
#Input: nums = [-1,0,1,2,-1,-4]
|
||||
#Output: [[-1,-1,2],[-1,0,1]]
|
||||
|
||||
#Example 2:
|
||||
#Input: nums = []
|
||||
#Output: []
|
||||
|
||||
#Example 3:
|
||||
#Input: nums = [0]
|
||||
#Output: []
|
||||
|
||||
#Constraints:
|
||||
#0 <= nums.length <= 3000
|
||||
#-105 <= nums[i] <= 105
|
||||
|
||||
|
||||
|
||||
|
||||
#Two Pointer Approach - O(n) Time / O(1) Space
|
||||
#Return edge cases.
|
||||
#Sort nums, and init ans array
|
||||
#For each |val, index| in nums:
|
||||
#if the current value is the same as last, then go to next iteration
|
||||
#init left and right pointers for two pointer search of the two sum in remaining elements of array
|
||||
#while left < right:
|
||||
#find current sum
|
||||
#if sum > 0, right -= 1
|
||||
#if sum < 0, left += 1
|
||||
#if it's 0, then add the values to the answer array, and set the left pointer to the next valid value ..
|
||||
#.. (left += 1 while nums[left] == nums[left - 1] && left < right)
|
||||
#Return ans[]
|
||||
|
||||
|
||||
# @param {Integer[]} nums
|
||||
# @return {Integer[][]}
|
||||
def three_sum(nums)
|
||||
#return if length too short
|
||||
return [] if nums.length < 3
|
||||
|
||||
#sort nums, init ans array
|
||||
nums, ans = nums.sort, []
|
||||
|
||||
#loop through nums
|
||||
nums.each_with_index do |val, ind|
|
||||
#if the previous value is the same as current, then skip this iteration as it would create duplicates
|
||||
next if ind > 0 && nums[ind] == nums[ind - 1]
|
||||
|
||||
#init & run two pointer search
|
||||
left, right = ind + 1, nums.length - 1
|
||||
|
||||
while left < right
|
||||
#find current sum
|
||||
sum = val + nums[left] + nums[right]
|
||||
|
||||
#decrease sum if it's too great, increase sum if it's too low
|
||||
if sum > 0
|
||||
right -= 1
|
||||
elsif sum < 0
|
||||
left += 1
|
||||
#if it's zero, then add the answer to array and set left pointer to next valid value
|
||||
else
|
||||
ans << [val, nums[left], nums[right]]
|
||||
|
||||
left += 1
|
||||
|
||||
while nums[left] == nums[left - 1] && left < right
|
||||
left += 1
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
#return answer
|
||||
ans
|
||||
end
|
44
data_structures/arrays/maximum_product_subarray.rb
Normal file
44
data_structures/arrays/maximum_product_subarray.rb
Normal file
|
@ -0,0 +1,44 @@
|
|||
#Given an integer array nums, find a contiguous non-empty subarray within the array that has the largest product, and return the product.
|
||||
#It is guaranteed that the answer will fit in a 32-bit integer.
|
||||
#A subarray is a contiguous subsequence of the array.
|
||||
|
||||
#Example 1:
|
||||
#Input: nums = [2,3,-2,4]
|
||||
#Output: 6
|
||||
#Explanation: [2,3] has the largest product 6.
|
||||
|
||||
#Example 2:
|
||||
#Input: nums = [-2,0,-1]
|
||||
#Output: 0
|
||||
#Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
|
||||
|
||||
#Constraints:
|
||||
#1 <= nums.length <= 2 * 104
|
||||
#-10 <= nums[i] <= 10
|
||||
#The product of any prefix or suffix of nums is guaranteed to fit in a 32-bit integer.
|
||||
|
||||
|
||||
|
||||
|
||||
#Dynamic Programming Approach (Kadane's Algorithm) - O(n) Time / O(1) Space
|
||||
#Track both current minimum and current maximum (Due to possibility of multiple negative numbers)
|
||||
#Answer is the highest value of current maximum
|
||||
|
||||
|
||||
# @param {Integer[]} nums
|
||||
# @return {Integer}
|
||||
def max_product(nums)
|
||||
return nums[0] if nums.length == 1
|
||||
|
||||
cur_min, cur_max, max = 1, 1, -11
|
||||
|
||||
nums.each do |val|
|
||||
tmp_cur_max = cur_max
|
||||
cur_max = [val, val*cur_max, val*cur_min].max
|
||||
cur_min = [val, val*tmp_cur_max, val*cur_min].min
|
||||
|
||||
max = [max, cur_max].max
|
||||
end
|
||||
|
||||
max
|
||||
end
|
56
data_structures/arrays/maximum_subarray.rb
Normal file
56
data_structures/arrays/maximum_subarray.rb
Normal file
|
@ -0,0 +1,56 @@
|
|||
#Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
|
||||
#A subarray is a contiguous part of an array.
|
||||
|
||||
#Example 1:
|
||||
#Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
|
||||
#Output: 6
|
||||
#Explanation: [4,-1,2,1] has the largest sum = 6.
|
||||
|
||||
#Example 2:
|
||||
#Input: nums = [1]
|
||||
#Output: 1
|
||||
|
||||
#Example 3:
|
||||
#Input: nums = [5,4,-1,7,8]
|
||||
#Output: 23
|
||||
|
||||
#Constraints:
|
||||
#1 <= nums.length <= 3 * 104
|
||||
#-105 <= nums[i] <= 105
|
||||
|
||||
|
||||
|
||||
|
||||
#Sliding Window Approach - O(n) Time / O(1) Space
|
||||
#Init max_sum as first element
|
||||
#Return first element if the array length is 1
|
||||
#Init current_sum as 0
|
||||
#Iterate through the array:
|
||||
#if current_sum < 0, then reset it to 0 (to eliminate any negative prefixes)
|
||||
#current_sum += num
|
||||
#max_sum = current_sum if current_sum is greater than max_sum
|
||||
#Return max_sum
|
||||
|
||||
|
||||
# @param {Integer[]} nums
|
||||
# @return {Integer}
|
||||
def max_sub_array(nums)
|
||||
#initialize max sum to first number
|
||||
max_sum = nums[0]
|
||||
|
||||
#return first number if array length is 1
|
||||
return max_sum if nums.length == 1
|
||||
|
||||
#init current sum to 0
|
||||
current_sum = 0
|
||||
|
||||
#iterate through array, reset current_sum to 0 if it ever goes below 0, track max_sum with highest current_sum
|
||||
nums.each do |num|
|
||||
current_sum = 0 if current_sum < 0
|
||||
current_sum += num
|
||||
max_sum = [max_sum, current_sum].max
|
||||
end
|
||||
|
||||
#return answer
|
||||
max_sum
|
||||
end
|
Loading…
Reference in a new issue