mirror of
https://github.com/TheAlgorithms/Ruby
synced 2025-01-14 08:01:05 +01:00
add output for max_sub_array algorithm
This commit is contained in:
parent
b7d623a303
commit
aecd3739f0
1 changed files with 56 additions and 46 deletions
|
@ -1,56 +1,66 @@
|
||||||
#Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
|
# Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
|
||||||
#A subarray is a contiguous part of an array.
|
# A subarray is a contiguous part of an array.
|
||||||
|
|
||||||
#Example 1:
|
# Example 1:
|
||||||
#Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
|
# Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
|
||||||
#Output: 6
|
# Output: 6
|
||||||
#Explanation: [4,-1,2,1] has the largest sum = 6.
|
# Explanation: [4,-1,2,1] has the largest sum = 6.
|
||||||
|
|
||||||
#Example 2:
|
# Example 2:
|
||||||
#Input: nums = [1]
|
# Input: nums = [1]
|
||||||
#Output: 1
|
# Output: 1
|
||||||
|
|
||||||
#Example 3:
|
# Example 3:
|
||||||
#Input: nums = [5,4,-1,7,8]
|
# Input: nums = [5,4,-1,7,8]
|
||||||
#Output: 23
|
# Output: 23
|
||||||
|
|
||||||
#Constraints:
|
# Constraints:
|
||||||
#1 <= nums.length <= 3 * 104
|
# 1 <= nums.length <= 3 * 104
|
||||||
#-105 <= nums[i] <= 105
|
# -105 <= nums[i] <= 105
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#Dynamic Programming Approach (Kadane's Algorithm) - O(n) Time / O(1) Space
|
|
||||||
#Init max_sum as first element
|
|
||||||
#Return first element if the array length is 1
|
|
||||||
#Init current_sum as 0
|
|
||||||
#Iterate through the array:
|
|
||||||
#if current_sum < 0, then reset it to 0 (to eliminate any negative prefixes)
|
|
||||||
#current_sum += num
|
|
||||||
#max_sum = current_sum if current_sum is greater than max_sum
|
|
||||||
#Return max_sum
|
|
||||||
|
|
||||||
|
# Dynamic Programming Approach (Kadane's Algorithm) - O(n) Time / O(1) Space
|
||||||
|
#
|
||||||
|
# Init max_sum as first element
|
||||||
|
# Return first element if the array length is 1
|
||||||
|
# Init current_sum as 0
|
||||||
|
# Iterate through the array:
|
||||||
|
# if current_sum < 0, then reset it to 0 (to eliminate any negative prefixes)
|
||||||
|
# current_sum += num
|
||||||
|
# max_sum = current_sum if current_sum is greater than max_sum
|
||||||
|
# Return max_sum
|
||||||
|
|
||||||
# @param {Integer[]} nums
|
# @param {Integer[]} nums
|
||||||
# @return {Integer}
|
# @return {Integer}
|
||||||
def max_sub_array(nums)
|
def max_sub_array(nums)
|
||||||
#initialize max sum to first number
|
# initialize max sum to first number
|
||||||
max_sum = nums[0]
|
max_sum = nums[0]
|
||||||
|
|
||||||
#return first number if array length is 1
|
# return first number if array length is 1
|
||||||
return max_sum if nums.length == 1
|
return max_sum if nums.length == 1
|
||||||
|
|
||||||
#init current sum to 0
|
# init current sum to 0
|
||||||
current_sum = 0
|
current_sum = 0
|
||||||
|
|
||||||
#iterate through array, reset current_sum to 0 if it ever goes below 0, track max_sum with highest current_sum
|
# iterate through array, reset current_sum to 0 if it ever goes below 0, track max_sum with highest current_sum
|
||||||
nums.each do |num|
|
nums.each do |num|
|
||||||
current_sum = 0 if current_sum < 0
|
current_sum = 0 if current_sum < 0
|
||||||
current_sum += num
|
|
||||||
max_sum = [max_sum, current_sum].max
|
|
||||||
end
|
|
||||||
|
|
||||||
#return answer
|
current_sum += num
|
||||||
max_sum
|
|
||||||
|
max_sum = [max_sum, current_sum].max
|
||||||
|
end
|
||||||
|
|
||||||
|
max_sum
|
||||||
end
|
end
|
||||||
|
|
||||||
|
nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
|
||||||
|
print max_sub_array(nums)
|
||||||
|
# Output: 6
|
||||||
|
|
||||||
|
nums = [1]
|
||||||
|
print max_sub_array(nums)
|
||||||
|
# Output: 1
|
||||||
|
|
||||||
|
nums = [5, 4, -1, 7, 8]
|
||||||
|
print max_sub_array(nums)
|
||||||
|
# Output: 23
|
||||||
|
|
Loading…
Reference in a new issue