mirror of
https://github.com/TheAlgorithms/Ruby
synced 2024-11-16 19:50:00 +01:00
Merge pull request #165 from datta-agni/master
RSA cryptographic algorithm implemented in Ruby.
This commit is contained in:
commit
83316d2da9
1 changed files with 94 additions and 0 deletions
94
ciphers/rsa.rb
Normal file
94
ciphers/rsa.rb
Normal file
|
@ -0,0 +1,94 @@
|
|||
require "prime"
|
||||
|
||||
def initialize(keys = {})
|
||||
@e ||= keys[:e]
|
||||
@n ||= keys[:n]
|
||||
end
|
||||
|
||||
def cipher(message)
|
||||
message.bytes.map do |byte|
|
||||
cbyte = ((byte.to_i ** e) % n).to_s
|
||||
missing_chars = n.to_s.size - cbyte.size
|
||||
"0" * missing_chars + cbyte
|
||||
end.join
|
||||
end
|
||||
|
||||
def decipher(ciphed_message)
|
||||
ciphed_message.chars.each_slice(n.to_s.size).map do |arr|
|
||||
(arr.join.to_i ** d) % n
|
||||
end.pack("c*")
|
||||
end
|
||||
|
||||
def public_keys
|
||||
{ n: n, e: e }
|
||||
end
|
||||
|
||||
private
|
||||
|
||||
def p
|
||||
@p ||= random_prime_number
|
||||
end
|
||||
|
||||
def q
|
||||
@q ||= random_prime_number
|
||||
end
|
||||
|
||||
def n
|
||||
@n ||= p * q
|
||||
end
|
||||
|
||||
def totient
|
||||
@totient ||= (p - 1) * (q - 1)
|
||||
end
|
||||
|
||||
def e
|
||||
@e ||= totient.downto(2).find do |i|
|
||||
Prime.prime?(i) && totient % i != 0
|
||||
end
|
||||
end
|
||||
|
||||
def d
|
||||
@d ||= invmod(e, totient)
|
||||
end
|
||||
|
||||
def extended_gcd(a, b)
|
||||
last_remainder, remainder = a.abs, b.abs
|
||||
x, last_x, y, last_y = 0, 1, 1, 0
|
||||
while remainder != 0
|
||||
last_remainder, (quotient, remainder) = remainder, last_remainder.divmod(remainder)
|
||||
x, last_x = last_x - quotient * x, x
|
||||
y, last_y = last_y - quotient * y, y
|
||||
end
|
||||
|
||||
return last_remainder, last_x * (a < 0 ? -1 : 1)
|
||||
end
|
||||
|
||||
def invmod(e, et)
|
||||
g, x = extended_gcd(e, et)
|
||||
raise "The maths are broken!" if g != 1
|
||||
x % et
|
||||
end
|
||||
|
||||
def random_prime_number
|
||||
number = Random.rand(1..1000)
|
||||
until Prime.prime?(number) || number == p || number == q
|
||||
number = Random.rand(1..1000)
|
||||
end
|
||||
number
|
||||
end
|
||||
|
||||
def main()
|
||||
puts "Enter the message you want to encrypt and decrypt with RSA algorithm: "
|
||||
message = gets.chomp().to_s
|
||||
puts "Encoded Text:"
|
||||
puts cipher(message)
|
||||
puts "Decoded Text:"
|
||||
puts decipher(cipher(message))
|
||||
puts "p: #{p()}"
|
||||
puts "q: #{q()}"
|
||||
puts "e: #{e()}"
|
||||
puts "d: #{d()}"
|
||||
puts "totient: #{totient()}"
|
||||
end
|
||||
|
||||
main()
|
Loading…
Reference in a new issue