Merge branch 'master' into jk-remove-vowels

This commit is contained in:
Vitor Oliveira 2021-03-29 14:37:30 -07:00 committed by GitHub
commit 7d1f6659ff
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 263 additions and 0 deletions

View file

@ -15,6 +15,8 @@
* [Jewels And Stones](https://github.com/TheAlgorithms/Ruby/blob/master/data_structures/arrays/jewels_and_stones.rb)
* [Remove Elements](https://github.com/TheAlgorithms/Ruby/blob/master/data_structures/arrays/remove_elements.rb)
* [Remove Vowels](https://github.com/TheAlgorithms/Ruby/blob/master/data_structures/arrays/remove_vowels.rb)
* [Richest Customer Wealth](https://github.com/TheAlgorithms/Ruby/blob/master/data_structures/arrays/richest_customer_wealth.rb)
* [Shuffle Array](https://github.com/TheAlgorithms/Ruby/blob/master/data_structures/arrays/shuffle_array.rb)
* [Single Number](https://github.com/TheAlgorithms/Ruby/blob/master/data_structures/arrays/single_number.rb)
* [Sort Squares Of An Array](https://github.com/TheAlgorithms/Ruby/blob/master/data_structures/arrays/sort_squares_of_an_array.rb)
* [Two Sum](https://github.com/TheAlgorithms/Ruby/blob/master/data_structures/arrays/two_sum.rb)
@ -24,6 +26,8 @@
* [Invert](https://github.com/TheAlgorithms/Ruby/blob/master/data_structures/binary_trees/invert.rb)
* [Postorder Traversal](https://github.com/TheAlgorithms/Ruby/blob/master/data_structures/binary_trees/postorder_traversal.rb)
* [Preorder Traversal](https://github.com/TheAlgorithms/Ruby/blob/master/data_structures/binary_trees/preorder_traversal.rb)
* Hash Table
* [Richest Customer Wealth](https://github.com/TheAlgorithms/Ruby/blob/master/data_structures/hash_table/richest_customer_wealth.rb)
* Linked Lists
* [Circular Linked List](https://github.com/TheAlgorithms/Ruby/blob/master/data_structures/linked_lists/circular_linked_list.rb)
* [Doubly Linked List](https://github.com/TheAlgorithms/Ruby/blob/master/data_structures/linked_lists/doubly_linked_list.rb)
@ -57,6 +61,7 @@
* [Fibonacci](https://github.com/TheAlgorithms/Ruby/blob/master/maths/fibonacci.rb)
* [Number Of Digits](https://github.com/TheAlgorithms/Ruby/blob/master/maths/number_of_digits.rb)
* [Power Of Two](https://github.com/TheAlgorithms/Ruby/blob/master/maths/power_of_two.rb)
* [Prime Number](https://github.com/TheAlgorithms/Ruby/blob/master/maths/prime_number.rb)
* [Square Root](https://github.com/TheAlgorithms/Ruby/blob/master/maths/square_root.rb)
* [Square Root Test](https://github.com/TheAlgorithms/Ruby/blob/master/maths/square_root_test.rb)
* [Sum Of Digits](https://github.com/TheAlgorithms/Ruby/blob/master/maths/sum_of_digits.rb)

View file

@ -0,0 +1,56 @@
# Challenge name: Richest Customer Wealth
#
# You are given an m x n integer grid accounts where accounts[i][j]
# is the amount of money the ith customer has in the jth bank.
#
# Return the wealth that the richest customer has.
# A customer's wealth is the amount of money they have in all
# their bank accounts. The richest customer is the customer that
# has the maximum wealth.
#
# Example 1:
# Input: accounts = [[1,2,3],[3,2,1]]
# Output: 6
# Explanation:
# 1st customer has wealth = 1 + 2 + 3 = 6
# 2nd customer has wealth = 3 + 2 + 1 = 6
# Both customers are considered the richest with a wealth of 6
# each, so return 6.
#
# Example 2:
# Input: accounts = [[1,5],[7,3],[3,5]]
# Output: 10
# Explanation:
# 1st customer has wealth = 6
# 2nd customer has wealth = 10
# 3rd customer has wealth = 8
# The 2nd customer is the richest with a wealth of 10.
#
# Example 3:
# Input: accounts = [[2,8,7],[7,1,3],[1,9,5]]
# Output: 17
#
# Approach: Brute Force
#
# Time Complexity: O(n)
#
def find_richest_customer_wealth(accounts)
summed_accounts = []
accounts.each do |customer|
summed = 0
customer.each do |account|
summed += account
end
summed_accounts.push(summed)
end
summed_accounts.sort.pop()
end
puts find_richest_customer_wealth([[1,2,3],[3,2,1]])
# => 6
puts find_richest_customer_wealth([[1,5],[7,3],[3,5]])
# => 10
puts find_richest_customer_wealth([[2,8,7],[7,1,3],[1,9,5]])
# => 17

View file

@ -0,0 +1,109 @@
# Challenge name: Shuffle the array
#
# Given the array nums consisting of 2n elements
# in the form [x1,x2,...,xn,y1,y2,...,yn].
# Return the array in the form [x1,y1,x2,y2,...,xn,yn].
#
# Example 1:
# Input: nums = [2,5,1,3,4,7], n = 3
# Output: [2,3,5,4,1,7]
# Explanation: Since x1=2, x2=5, x3=1, y1=3, y2=4, y3=7 then the answer is [2,3,5,4,1,7].
#
# Example 2:
# Input: nums = [1,2,3,4,4,3,2,1], n = 4
# Output: [1,4,2,3,3,2,4,1]
#
# Example 3:
# Input: nums = [1,1,2,2], n = 2
# Output: [1,2,1,2]
#
# @param {Integer[]} nums
# @param {Integer} n
# @return {Integer[]}
#
# Approach 1: New Array
#
# Time Complexity: O(N)
#
def shuffle(nums, n)
result = []
(0..n-1).count do |i|
result.push(nums[i], nums[i+n])
end
result
end
nums = [2, 5, 1, 3, 4, 7]
n = 3
print(shuffle(nums, n))
# Output: [2,3,5,4,1,7]
nums = [1, 2, 3, 4, 4, 3, 2, 1]
n = 4
print(shuffle(nums, n))
# Output: [1,4,2,3,3,2,4,1]
nums = [1, 1, 2, 2]
n = 2
print(shuffle(nums, n))
# Output: [1,2,1,2]
#
# Approach 2: Use Ruby methods .insert() and .delete_at()
#
# Time Complexity: O(N)
#
def shuffle(nums, n)
current_index = 1
(0..n-1).each do |i|
nums.insert(current_index, nums.delete_at(i + n))
current_index += 2
end
nums
end
nums = [2, 5, 1, 3, 4, 7]
n = 3
print(shuffle(nums, n))
# Output: [2,3,5,4,1,7]
nums = [1, 2, 3, 4, 4, 3, 2, 1]
n = 4
print(shuffle(nums, n))
# Output: [1,4,2,3,3,2,4,1]
nums = [1, 1, 2, 2]
n = 2
print(shuffle(nums, n))
# Output: [1,2,1,2]
#
# Approach 3: Two Pointers
#
# Time Complexity: O(N)
#
def shuffle(nums, n)
result = []
p1 = 0
p2 = n
while p1 < n
result.push(nums[p1], nums[p2])
p1 +=1
p2 +=1
end
result
end
nums = [2, 5, 1, 3, 4, 7]
n = 3
print(shuffle(nums, n))
# Output: [2,3,5,4,1,7]
nums = [1, 2, 3, 4, 4, 3, 2, 1]
n = 4
print(shuffle(nums, n))
# Output: [1,4,2,3,3,2,4,1]
nums = [1, 1, 2, 2]
n = 2
print(shuffle(nums, n))
# Output: [1,2,1,2]

View file

@ -0,0 +1,59 @@
# Challenge name: Richest Customer Wealth
#
# You are given an m x n integer grid accounts where accounts[i][j]
# is the amount of money the ith customer has in the jth bank.
#
# Return the wealth that the richest customer has.
# A customer's wealth is the amount of money they have in all
# their bank accounts. The richest customer is the customer that
# has the maximum wealth.
#
# Example 1:
# Input: accounts = [[1,2,3],[3,2,1]]
# Output: 6
# Explanation:
# 1st customer has wealth = 1 + 2 + 3 = 6
# 2nd customer has wealth = 3 + 2 + 1 = 6
# Both customers are considered the richest with a wealth of 6
# each, so return 6.
#
# Example 2:
# Input: accounts = [[1,5],[7,3],[3,5]]
# Output: 10
# Explanation:
# 1st customer has wealth = 6
# 2nd customer has wealth = 10
# 3rd customer has wealth = 8
# The 2nd customer is the richest with a wealth of 10.
#
# Example 3:
# Input: accounts = [[2,8,7],[7,1,3],[1,9,5]]
# Output: 17
#
# Approach: Hash
#
# Time Complexity: O(n)
#
def find_richest_customer_wealth(accounts)
result_hash = {}
accounts.each_with_index do |customer, i|
result_hash[i] = customer.sum
end
highest_value = 0
result_hash.each do |k, v|
if v > highest_value
highest_value = v
end
end
highest_value
end
puts find_richest_customer_wealth([[1,2,3],[3,2,1]])
# => 6
puts find_richest_customer_wealth([[1,5],[7,3],[3,5]])
# => 10
puts find_richest_customer_wealth([[2,8,7],[7,1,3],[1,9,5]])
# => 17

34
maths/prime_number.rb Normal file
View file

@ -0,0 +1,34 @@
# A ruby program to check a given number is prime or not
# Mathematical explanation: A number which has only 2 factors i.e., 1 (one) and itself
# Prime number check function
def prime_number(number)
if number <= 1
non_prime_flag = true
elsif number == 2
non_prime_flag = false
elsif number % 2 == 0
non_prime_flag = true
else
non_prime_flag = (2..Math.sqrt(number)).any? { |i| number % i == 0 }
end
if !non_prime_flag
puts "The given number #{number} is a Prime."
else
puts "The given number #{number} is not a Prime."
end
end
# Non-prime input
prime_number(1)
# prime input
# Number 2 is an even prime number
prime_number(2)
# Non-prime input
prime_number(20)
# Negative input
prime_number(-21)