mirror of
https://github.com/TheAlgorithms/Ruby
synced 2025-01-27 19:58:06 +01:00
Pascal triangle ii: math approach
This commit is contained in:
parent
aece3afeee
commit
5f6036b6c6
1 changed files with 48 additions and 0 deletions
48
maths/pascal_triangle_ii.rb
Normal file
48
maths/pascal_triangle_ii.rb
Normal file
|
@ -0,0 +1,48 @@
|
|||
# Challenge name: Pascal's triangle ii
|
||||
#
|
||||
# Given an integer row_index, return the rowIndexth (0-indexed) row of the Pascal's triangle.
|
||||
# Example 1:
|
||||
#
|
||||
# Input: row_index = 3
|
||||
# Output: [1,3,3,1]
|
||||
#
|
||||
# Example 2:
|
||||
#
|
||||
# Input: row_index = 0
|
||||
# Output: [1]
|
||||
#
|
||||
# Example 3:
|
||||
#
|
||||
# Input: row_index = 1
|
||||
# Output: [1,1]
|
||||
|
||||
# Complexity Analysis
|
||||
# Time complexity: O(k).
|
||||
# Each term is calculated once, in constant time.
|
||||
|
||||
# Space complexity: O(k).
|
||||
# No extra space required other than that required to hold the output.
|
||||
|
||||
def get_row(row_index)
|
||||
(0..row_index).map {|num| combination(row_index, num) }
|
||||
end
|
||||
|
||||
def combination(num1, num2)
|
||||
factorial(num1) / (factorial(num2) * factorial(num1 - num2))
|
||||
end
|
||||
|
||||
def factorial(num)
|
||||
(1..num).inject(1) {|res, i| res * i }
|
||||
end
|
||||
|
||||
row_index = 3
|
||||
print(get_row(row_index))
|
||||
# => [1,3,3,1]
|
||||
|
||||
row_index = 0
|
||||
print(get_row(row_index))
|
||||
# => [1]
|
||||
|
||||
row_index = 1
|
||||
print(get_row(row_index))
|
||||
# => [1,1]
|
Loading…
Add table
Reference in a new issue