mirror of
https://github.com/TheAlgorithms/Ruby
synced 2025-01-27 19:58:06 +01:00
Move two_sum to hash table folder
This commit is contained in:
parent
66756bf5d4
commit
57a46a8271
2 changed files with 70 additions and 45 deletions
|
@ -86,48 +86,3 @@ print(two_sum([3, 2, 4], 6))
|
|||
|
||||
print(two_sum([3, 3], 6))
|
||||
# => [0,1]
|
||||
|
||||
#
|
||||
# Approach 3: Using a Hash
|
||||
#
|
||||
|
||||
# Complexity analysis
|
||||
|
||||
# Time complexity: O(n). We traverse the list containing n elements exactly twice.
|
||||
# Since the hash table reduces the lookup time to O(1), the time complexity is O(n).
|
||||
|
||||
# Space complexity: O(n). The extra space required depends on the number of items
|
||||
# stored in the hash table, which stores exactly n elements.
|
||||
|
||||
def two_sum(nums, target)
|
||||
hash = {}
|
||||
|
||||
# create a hash to store values and their indices
|
||||
nums.each_with_index do |num, i|
|
||||
hash[num] = i
|
||||
end
|
||||
|
||||
# iterate over nums array to find the target (difference between sum target and num)
|
||||
nums.each_with_index do |num, i|
|
||||
difference_target = target - num
|
||||
|
||||
if hash[difference_target] && hash[difference_target] != i
|
||||
return [i, hash[difference_target]]
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
nums = [2, 7, 11, 15]
|
||||
target = 9
|
||||
print(two_sum(nums, target))
|
||||
# => [0,1]
|
||||
|
||||
nums = [3, 2, 4]
|
||||
target = 6
|
||||
print(two_sum(nums, target))
|
||||
# => [1,2]
|
||||
|
||||
nums = [3, 3]
|
||||
target = 6
|
||||
print(two_sum(nums, target))
|
||||
# => [0,1]
|
||||
|
|
70
data_structures/hash_table/two_sum.rb
Normal file
70
data_structures/hash_table/two_sum.rb
Normal file
|
@ -0,0 +1,70 @@
|
|||
# Challenge name: Two Sum
|
||||
#
|
||||
# Given an array of integers nums and an integer target, return indices of the two numbers such that they add up to target.
|
||||
#
|
||||
# You may assume that each input would have exactly one solution, and you may not use the same element twice.
|
||||
#
|
||||
# You can return the answer in any order.
|
||||
#
|
||||
#
|
||||
# Examples
|
||||
#
|
||||
# Input: nums = [2, 7, 11, 15], target = 9
|
||||
# Output: [0,1]
|
||||
# Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].
|
||||
#
|
||||
# Input: nums = [3, 2, 4], target = 6
|
||||
# Output: [1,2]
|
||||
#
|
||||
# Input: nums = [3, 3], target = 6
|
||||
# Output: [0,1]
|
||||
# Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].
|
||||
#
|
||||
# @param {Integer[]} nums
|
||||
# @param {Integer} target
|
||||
# @return {Integer[]}
|
||||
|
||||
#
|
||||
# Approach: Using Hash table
|
||||
#
|
||||
|
||||
# Complexity analysis
|
||||
|
||||
# Time complexity: O(n). We traverse the list containing n elements exactly twice.
|
||||
# Since the hash table reduces the lookup time to O(1), the time complexity is O(n).
|
||||
|
||||
# Space complexity: O(n). The extra space required depends on the number of items
|
||||
# stored in the hash table, which stores exactly n elements.
|
||||
|
||||
def two_sum(nums, target)
|
||||
hash = {}
|
||||
|
||||
# create a hash to store values and their indices
|
||||
nums.each_with_index do |num, i|
|
||||
hash[num] = i
|
||||
end
|
||||
|
||||
# iterate over nums array to find the target (difference between sum target and num)
|
||||
nums.each_with_index do |num, i|
|
||||
difference_target = target - num
|
||||
|
||||
if hash[difference_target] && hash[difference_target] != i
|
||||
return [i, hash[difference_target]]
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
nums = [2, 7, 11, 15]
|
||||
target = 9
|
||||
print(two_sum(nums, target))
|
||||
# => [0,1]
|
||||
|
||||
nums = [3, 2, 4]
|
||||
target = 6
|
||||
print(two_sum(nums, target))
|
||||
# => [1,2]
|
||||
|
||||
nums = [3, 3]
|
||||
target = 6
|
||||
print(two_sum(nums, target))
|
||||
# => [0,1]
|
Loading…
Add table
Reference in a new issue