mirror of
https://github.com/TheAlgorithms/Ruby
synced 2025-01-27 19:58:06 +01:00
Minor changes
This commit is contained in:
parent
8e1e5586a5
commit
29dc653dba
2 changed files with 27 additions and 29 deletions
|
@ -5,10 +5,13 @@
|
|||
# each element at index `i` of the new array is the product of
|
||||
# all the numbers in the original array except the one at `i`.
|
||||
|
||||
# Generates prefix products
|
||||
# prefix_products[i] contains the product of all the elements to the left
|
||||
# Note: for the element at index '0', there are no elements to the left,
|
||||
# so the prefix_products[0] would be 1
|
||||
#
|
||||
# This file solves the algorithm in 3 approaches:
|
||||
#
|
||||
# 1. Brute force
|
||||
# 2. Left and Right product lists
|
||||
# 3. O(1) space approach
|
||||
#
|
||||
|
||||
#
|
||||
# 1. Brute force solution
|
||||
|
@ -16,9 +19,11 @@
|
|||
def calculate_products_of_all_other_elements(nums)
|
||||
product_of_other_elements = Array.new(nums.length, 1)
|
||||
|
||||
nums.each_with_index do |_num1, i|
|
||||
nums.each_with_index do |num2, j|
|
||||
product_of_other_elements[i] = product_of_other_elements[i] * num2 if i != j
|
||||
nums.count.times do |i|
|
||||
nums.count.times do |j|
|
||||
next if i == j
|
||||
|
||||
product_of_other_elements[i] = product_of_other_elements[i] * nums[j]
|
||||
end
|
||||
end
|
||||
|
||||
|
@ -48,7 +53,7 @@ def build_prefix_products(nums)
|
|||
|
||||
nums.each do |num|
|
||||
prefix_products << if prefix_products.count > 0
|
||||
(prefix_products.last * num)
|
||||
prefix_products.last * num
|
||||
else
|
||||
num
|
||||
end
|
||||
|
@ -66,7 +71,7 @@ def build_suffix_products(nums)
|
|||
|
||||
nums.reverse.each do |num|
|
||||
suffix_products << if suffix_products.count > 0
|
||||
(suffix_products.last * num)
|
||||
suffix_products.last * num
|
||||
else
|
||||
num
|
||||
end
|
||||
|
@ -107,19 +112,13 @@ end
|
|||
puts(products([1, 2, 3]))
|
||||
# => [6, 3, 2]
|
||||
|
||||
|
||||
#
|
||||
# Approach 3: O(1) space approach
|
||||
#
|
||||
|
||||
# Although the above solution is good enough to solve the problem since
|
||||
# we are not using division anymore, there's a follow-up component as
|
||||
# well which asks us to solve this using constant space. Understandably so,
|
||||
# the output array does not count towards the space complexity.
|
||||
# This approach is essentially an extension of the approach above.
|
||||
# This approach is essentially an extension of the approach 2.
|
||||
# Basically, we will be using the output array as one of L or R and we will
|
||||
# be constructing the other one on the fly. Let's look at the algorithm based
|
||||
# on this idea.
|
||||
# be constructing the other one on the fly.
|
||||
|
||||
# Complexity analysis
|
||||
#
|
||||
|
@ -128,36 +127,35 @@ puts(products([1, 2, 3]))
|
|||
# answer.
|
||||
|
||||
# Space complexity: O(1) since don't use any additional array for our
|
||||
# computations. The problem statement mentions that using the answeranswer
|
||||
# computations. The problem statement mentions that using the answer
|
||||
# array doesn't add to the space complexity.
|
||||
|
||||
def products(nums)
|
||||
return [] if nums.size < 2
|
||||
|
||||
# The answer array to be returned
|
||||
res = [1]
|
||||
|
||||
# answer[i] contains the product of all the elements to the left
|
||||
# Note: for the element at index '0', there are no elements to the left,
|
||||
# so the answer[0] would be 1
|
||||
(0..(nums.size - 2)).each do |idx|
|
||||
(0..(nums.size - 2)).each do |i|
|
||||
# answer[i - 1] already contains the product of elements to the left of 'i - 1'
|
||||
# Simply multiplying it with nums[i - 1] would give the product of all
|
||||
# elements to the left of index 'i'
|
||||
num = nums[idx]
|
||||
res << num * res[idx]
|
||||
num = nums[i]
|
||||
res << num * res[i]
|
||||
end
|
||||
|
||||
# R contains the product of all the elements to the right
|
||||
# Note: for the element at index 'length - 1', there are no elements to the right,
|
||||
# so the R would be 1
|
||||
product = 1
|
||||
(nums.size - 1).downto(1).each do |idx|
|
||||
num = nums[idx]
|
||||
# For the index 'i', R would contain the
|
||||
# product of all elements to the right. We update R accordingly
|
||||
res[idx - 1] *= (product * num)
|
||||
product *= num
|
||||
(nums.size - 1).downto(1).each do |i|
|
||||
num = nums[i]
|
||||
# For the index 'i', R would contain the
|
||||
# product of all elements to the right. We update R accordingly
|
||||
res[i - 1] *= (product * num)
|
||||
product *= num
|
||||
end
|
||||
|
||||
res
|
||||
|
|
|
@ -146,7 +146,7 @@ class DoublyLinkedList
|
|||
print "#{head.val} --> "
|
||||
if head.next.nil?
|
||||
puts("nil\n")
|
||||
return
|
||||
nil
|
||||
else
|
||||
print_values(head.next)
|
||||
end
|
||||
|
|
Loading…
Add table
Reference in a new issue