TheAlgorithms-Ruby/ciphers/rsa.rb

99 lines
1.7 KiB
Ruby
Raw Normal View History

2021-11-02 07:45:20 +01:00
require 'prime'
def initialize(keys = {})
@e ||= keys[:e]
@n ||= keys[:n]
end
def cipher(message)
message.bytes.map do |byte|
2021-11-02 07:45:20 +01:00
cbyte = ((byte.to_i**e) % n).to_s
missing_chars = n.to_s.size - cbyte.size
2021-11-02 07:45:20 +01:00
'0' * missing_chars + cbyte
end.join
end
def decipher(ciphed_message)
ciphed_message.chars.each_slice(n.to_s.size).map do |arr|
2021-11-02 07:45:20 +01:00
(arr.join.to_i**d) % n
end.pack('c*')
end
def public_keys
{ n: n, e: e }
end
private
def p
@p ||= random_prime_number
end
def q
@q ||= random_prime_number
end
def n
@n ||= p * q
end
def totient
@totient ||= (p - 1) * (q - 1)
end
def e
@e ||= totient.downto(2).find do |i|
Prime.prime?(i) && totient % i != 0
end
end
def d
@d ||= invmod(e, totient)
end
def extended_gcd(a, b)
2021-11-02 07:45:20 +01:00
last_remainder = a.abs
remainder = b.abs
x = 0
last_x = 1
y = 1
last_y = 0
while remainder != 0
2021-11-02 07:45:20 +01:00
(quotient, remainder) = last_remainder.divmod(remainder)
last_remainder = remainder
x, last_x = last_x - quotient * x, x
y, last_y = last_y - quotient * y, y
end
2021-11-02 07:45:20 +01:00
[last_remainder, last_x * (a < 0 ? -1 : 1)]
end
def invmod(e, et)
g, x = extended_gcd(e, et)
2021-11-02 07:45:20 +01:00
raise 'The maths are broken!' if g != 1
x % et
end
def random_prime_number
number = Random.rand(1..1000)
2021-11-02 07:45:20 +01:00
number = Random.rand(1..1000) until Prime.prime?(number) || number == p || number == q
number
end
2021-11-02 07:45:20 +01:00
def main
puts 'Enter the message you want to encrypt and decrypt with RSA algorithm: '
message = gets.chomp.to_s
puts 'Encoded Text:'
puts cipher(message)
2021-11-02 07:45:20 +01:00
puts 'Decoded Text:'
puts decipher(cipher(message))
2021-11-02 07:45:20 +01:00
puts "p: #{p}"
puts "q: #{q}"
puts "e: #{e}"
puts "d: #{d}"
puts "totient: #{totient}"
end
2021-11-02 07:45:20 +01:00
main