mirror of
https://github.com/TheAlgorithms/Ruby
synced 2024-12-30 22:24:11 +01:00
64 lines
1.8 KiB
Ruby
64 lines
1.8 KiB
Ruby
|
require "test/unit"
|
||
|
|
||
|
# 0-1 Knapsack problem
|
||
|
# The function returns the maximum value that can be put in a knapsack of a given capacity
|
||
|
|
||
|
def knapSack(weight, wt, val, n)
|
||
|
|
||
|
rows, cols = n+1,weight+1
|
||
|
# Create a 2D array to store results of subproblems
|
||
|
dp = Array.new(rows) { Array.new(cols) }
|
||
|
|
||
|
for i in (0..n + 1-1)
|
||
|
for w in (0..weight + 1-1)
|
||
|
# if the weight is 0 or value is zero, the corresponding cell in the 2D array is set to 0
|
||
|
if i == 0 || w == 0
|
||
|
dp[i][w] = 0
|
||
|
|
||
|
#If the weight of an element is less than the capacity of the bag, the maximum value of the two cases is taken(Either the element is taken into consideration
|
||
|
#or is ignored)
|
||
|
elsif wt[i-1] <= w
|
||
|
dp[i][w] = [ val[i-1] + dp[i-1][w-wt[i-1]],dp[i-1][w]].max()
|
||
|
|
||
|
#If the weight of the element is greater than the capacity of the bag, the cell is set to the value of the previous cell
|
||
|
else
|
||
|
dp[i][w] = dp[i-1][w]
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
|
||
|
return dp[n][weight]
|
||
|
end
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
class Knapsacktest < Test::Unit::TestCase
|
||
|
|
||
|
#Test1
|
||
|
def test_knapsack1
|
||
|
assert_equal 220, knapSack(50,[10,20,30],[60,100,120],3), "Should return 220"
|
||
|
end
|
||
|
|
||
|
|
||
|
#Test2
|
||
|
def test_knapsack2
|
||
|
assert_equal 500, knapSack(50,[50, 20, 30],[100, 200, 300],3), "Should return 500"
|
||
|
end
|
||
|
|
||
|
#Test3
|
||
|
def test_knapsack3
|
||
|
assert_equal 17, knapSack(10,[3,4,5, 2, 1],[10,2,3,4,0],5), "Should return 17"
|
||
|
end
|
||
|
|
||
|
#Test4
|
||
|
def test_knapsack4
|
||
|
assert_equal 0, knapSack(0,[23, 17, 12, 8, 20],[199,200,30,41,10],5), "Should return 0"
|
||
|
end
|
||
|
|
||
|
|
||
|
end
|
||
|
|
||
|
|
||
|
|