QtHPConnect/hpusb.cpp

534 lines
14 KiB
C++
Raw Normal View History

2019-02-10 14:43:00 +01:00
//
//
//
//
// Note hpusb opens an interface but can have multiple usb ports
// open. Hence handle information is stored else where
2019-02-10 14:32:15 +01:00
#include "hpusb.h"
2019-02-10 14:43:00 +01:00
#include "hpdata.h"
#include <libusb.h>
#include <signal.h>
#include "global.h"
#include <QTextCodec>
//return 0 = success
//return > err
2019-02-10 14:32:15 +01:00
hpusb::hpusb()
{
2019-02-10 14:43:00 +01:00
lb_init=0;
}
// Initialise libusb
// returns 0 if succesfull
int hpusb::hp_init()
{
int ret=0;
if(!lb_init) {
log("Initialising usb interface");
if(!(ret=libusb_init(&ctx))) {
log("libusb init ok");
libusb_set_debug(ctx,LIBUSB_LOG_LEVEL_DEBUG);
lb_init=1;
return ret;
}
else
err(L3,ret,QString(QString().sprintf("Could not open libusb: %d",ret)));
}
return ret;
}
//open usb and claim it
int hpusb::hp_open(hp_Handle * handle) {
int ret=0;
// discover devices
libusb_device **list;
libusb_device *found = nullptr;
libusb_device_handle * devh;
if(!lb_init)
hp_init();
if ((!handle->dev_open)&&(lb_init)) {
ssize_t cnt = libusb_get_device_list(nullptr, &list);
ssize_t i = 0;
if (cnt < 0)
err(L3,0,"Could not get a device list");
for (i = 0; i < cnt; i++) {
libusb_device *device = list[i];
if (is_device(device)) {
found = device;
log("Device found");
break;
}
}
if (found) {
ret= libusb_open(found, &devh);
if (ret) {
err(L3,ret,"Could not open usb device");
goto endfunc;
}
qDebug()<<"set handle";
if (handle!=nullptr) {
handle->usbhandle = devh;
handle->usbdevice = found;
}
else
{
err(L3,0,"handle null");
}
log("Device opened");
//claim interface
ret = libusb_kernel_driver_active ( handle->usbhandle, 0x0) ;
if (ret==1) {
log(QString().sprintf("Keneral active"));
ret = libusb_detach_kernel_driver( handle->usbhandle, 0x0) ;
log(QString().sprintf("Keneral detach: %s\n", libusb_error_name(ret)));
if (ret!=0) {
log(QString().sprintf("Keneral detach error: %s\n", libusb_error_name(ret)));
goto endfunc;
}
}
else
if (ret!=0) {
log(QString().sprintf("Kernal error %s\n", libusb_error_name(ret)));
goto endfunc;
}
//Note: Configuration 0 causes calculator to reboot
// 1 ok
//
// ret=libusb_set_configuration(handle->usbhandle,0x1);
// if (ret!=0) {
// log(QString().sprintf("Set Configuration: %s\n", libusb_error_name(ret)));
// goto endfunc;
// }
handle->dev_open=1;
ret = libusb_claim_interface(handle->usbhandle, 0x0);
if (ret!=0) {
log(QString().sprintf("Claim interface Error: %s\n", libusb_error_name(ret)));
return -1;
}
}
else {
ret=-1;
}
endfunc:
libusb_free_device_list(list, 1);
}
return ret;
}
//replace with libusb_open_device_with_vid_pid
int hpusb::is_device(libusb_device * device) {
libusb_device_descriptor desc = {0};
int rc=0;
rc = libusb_get_device_descriptor(device, &desc);
if (rc!=0) {
err(L3,rc,QString(__FUNCTION__) + QString(" Could not get device descriptor "));
}
else {
// log(QString().sprintf("Vendor:Device = %04x:%04x", desc.idVendor, desc.idProduct));
if ((desc.idVendor==USB_VID_HP)&&(desc.idProduct==USB_PID_PRIME3)) {
return 1;
}
}
return 0;
}
int hpusb::submit_sync_transfer(hp_Handle * handle, hp_pkt_in * pktin, hp_pkt_out * pktout) {
log("In sync transfer");
if (!handle)
return -1;
libusb_device_handle * devh = handle->usbhandle;
qDebug()<<QString().sprintf("%s %p",__FUNCTION__,handle->usbhandle);
int ret;
int trans=0;
if (!devh)
return -1;
//write
log("Send..");
ret = libusb_interrupt_transfer(devh, 0x02, pktin->buffer, pktin->size,
&trans,10000);
log(QString().sprintf("Write Error: %s\n", libusb_error_name(ret)));
log(QString().sprintf("Write bytes: %d\n", trans));
//read
log("Recieve...");
ret = libusb_interrupt_transfer(devh,0x81,pktout->buffer,pktout->size-8,&trans,10000);
log(QString().sprintf("read: %d\n", trans));
if (ret){
log(QString().sprintf("ERROR in interrupt read: %s\n", libusb_error_name(ret)));
}
else{
//printf("%d receive %d bytes from device: %s\n");
log(QString().sprintf("%d bytes received",trans));
main_err-> dump(pktout->buffer,trans);
}
return ret;
}
//send a submission
int hpusb::submit_async_transfer(hp_Handle * handle, hp_pkt_in * pktin, hp_pkt_out *pktout) {
// static uint8_t in_buffer[LEN_IN_BUFFER];
int buffer_len;
buffer_len=pktin->size;
struct sigaction sigact;
int r = 1; // result
int i;
do_exit = 0;
libusb_device_handle * devh = handle->usbhandle;
//Allocation
// allocate transfer of data IN (IN to host PC from USB-device)
transfer_in = libusb_alloc_transfer(0);
//Filling
//libusb_fill_interrupt_setup(in_buffer,LIBUSB_RECIPIENT_DEVICE ,LIBUSB_REQUEST_TYPE_STANDARD,0,0,16);
libusb_fill_control_transfer( transfer_in, devh,
pktin->buffer, // Note: in_buffer is where input data written.
cb_in, nullptr, 1000); // no user data
//take the initial time measurement
clock_gettime(CLOCK_REALTIME, &t1);
//Submission
//submit the transfer, all following transfers are initiated from the CB
r = libusb_submit_transfer(transfer_in);
// Define signal handler to catch system generated signals
// (If user hits CTRL+C, this will deal with it.)
sigact.sa_handler = sighandler; // sighandler is defined below. It just sets do_exit.
sigemptyset(&sigact.sa_mask);
sigact.sa_flags = 0;
sigaction(SIGINT, &sigact, NULL);
sigaction(SIGTERM, &sigact, NULL);
sigaction(SIGQUIT, &sigact, NULL);
printf("Entering loop to process callbacks...\n");
/* The implementation of the following while loop makes a huge difference.
* Since libUSB asynchronous mode doesn't create a background thread,
* libUSB can't create a callback out of nowhere. This loop calls the event handler.
* In real applications you might want to create a background thread or call the event
* handler from your main event hanlder.
* For a proper description see:
* http://libusbx.sourceforge.net/api-1.0/group__asyncio.html#asyncevent
* http://libusbx.sourceforge.net/api-1.0/group__poll.html
* http://libusbx.sourceforge.net/api-1.0/mtasync.html
*/
int c=0;
if(0){
qDebug()<<"At loop";
// This implementation uses a blocking call
while (!do_exit) {
c++;
r = libusb_handle_events_completed(ctx, NULL);
if ((r < 0)||(c>100000)){ // negative values are errors
qDebug()<<"At break";
exitflag = out_deinit;
break;
}
}
}
else{
// This implementation uses a blocking call and aquires a lock to the event handler
struct timeval timeout;
timeout.tv_sec = 0; // seconds
timeout.tv_usec = 100000; // ( .1 sec)
libusb_lock_events(ctx);
c=0;
while (!do_exit) {
c++;
r = libusb_handle_events_locked(ctx, &timeout);
if ((r < 0)||(c>10000)){ // negative values are errors
exitflag = out_deinit;
qDebug()<<"At break 2";
break;
}
}
libusb_unlock_events(ctx);
}
// If these transfers did not complete then we cancel them.
// Unsure if this is correct...
if (transfer_out) {
r = libusb_cancel_transfer(transfer_out);
if (0 == r){
printf("transfer_out successfully cancelled\n");
}
if (r < 0){
exitflag = out_deinit;
}
}
if (transfer_in) {
r = libusb_cancel_transfer(transfer_in);
if (0 == r){
printf("transfer_in successfully cancelled\n");
}
if (r < 0){
exitflag = out_deinit;
}
}
//Completion Handling
//Deallocation
switch(exitflag){
case out_deinit:
printf("at out_deinit\n");
libusb_free_transfer(transfer_out);
libusb_free_transfer(transfer_in);
case out_release:
libusb_release_interface(devh, 0);
}
}
// This will catch user initiated CTRL+C type events and allow the program to exit
void sighandler(int signum)
{
printf("sighandler\n");
}
//submission callback
// Out Callback
// - This is called after the Out transfer has been received by libusb
void cb_out(struct libusb_transfer *transfer) {
QString().sprintf("status =%d, actual_length=%d\n",
transfer->status, transfer->actual_length);
}
// In Callback
// - This is called after the command for version is processed.
// That is, the data for in_buffer IS AVAILABLE.
void cb_in(struct libusb_transfer *transfer)
{
qDebug()<<"in cb_in";
uint32_t benchPackets=1;
uint32_t benchBytes=0;
struct timespec t1, t2;
uint32_t diff=0;
//measure the time
clock_gettime(CLOCK_REALTIME, &t2);
//submit the next transfer
//libusb_submit_transfer(transfer_in);
benchBytes += transfer->actual_length;
//this averages the bandwidth over many transfers
if(++benchPackets%100==0){
//Warning: uint32_t has a max value of 4294967296 so this will overflow over 4secs
diff = (t2.tv_sec-t1.tv_sec)*1000000000L+(t2.tv_nsec-t1.tv_nsec);
t1.tv_sec = t2.tv_sec;
t1.tv_nsec = t2.tv_nsec;
printf("\rreceived %5d transfers and %8d bytes in %8d us, %8.1f B/s", benchPackets, benchBytes, diff/1000, benchBytes*1000000.0/(diff/1000));
fflush(stdout);
benchPackets=0;
benchBytes=0;
}
}
int hpusb::hp_func() {
return 0;
}
int hpusb::is_ready() {
return 0;
}
int hpusb::load_info(hp_Handle * handle, hp_Information * hpinfo) {
uint8_t transferbuffer[PRIME_RAW_HID_DATA_SIZE ];
uint8_t out_buffer[LEN_IN_BUFFER+8];
hp_pkt_in pktin;
hp_pkt_out pktout;
transferbuffer[0]=0x0;
transferbuffer[1]=CMD_PRIME_GET_INFOS;
pktin.buffer=transferbuffer;
pktin.size=2;
pktout.buffer=out_buffer;
pktout.size=sizeof(out_buffer);
// pktout.size=PRIME_RAW_HID_DATA_SIZE+16;
if (!submit_sync_transfer(handle,&pktin,&pktout)){
//unpack data
log("unpacking data");
int ind=0;
qDebug()<<"start";
QTextCodec * codec = QTextCodec::codecForName("UTF-8");
QByteArray rd= QByteArray(reinterpret_cast<const char*>(pktout.buffer), pktout.size);
//find name
ind=rd.indexOf(QChar(0x6c),0)+1;
QByteArray str1 =rd.mid(ind,64);
qDebug()<<ind;
qDebug()<<str1.at(0);
qDebug()<<str1.at(1);
// qDebug()<<rd;
QString name;
name = codec->toUnicode(str1);
hpinfo->name=name;
qDebug()<<name;
log("the name is ...")
log(name);
//find OS Version
unsigned char searchstr[] = {0x80,0x20,0x80,0x01,0x62,0x01};
ind+=rd.indexOf((char *) searchstr,ind+64)+4;
qDebug()<<ind;
//ind+=;
str1 =rd.mid(ind,16);
QString osv;
osv = codec->toUnicode(str1);
hpinfo->osver=osv;
qDebug()<<osv;
log(osv);
//find Serial Number
ind+=16;
str1 =rd.mid(ind,16);
QString serial;
serial = codec->toUnicode(str1);
hpinfo->serialnum=serial;
qDebug()<<serial;
log(serial);
//find Application Version
ind+=16;
str1 =rd.mid(ind,16);
QString app;
app = codec->toUnicode(str1);
//hpinfo->appver=app;
qDebug()<<app;
log(app);
//
return 0;
}
else {
log("failed to read info from device");
return 1;
}
return 0;
}
int hpusb::get_info(/*calc_infos * infos*/) {
return 0;
}
int hpusb::vpkt_send_experiments(hp_Handle * handle, int cmd) {
uint8_t transferbuffer[PRIME_RAW_HID_DATA_SIZE ];
uint8_t out_buffer[LEN_IN_BUFFER+8];
hp_pkt_in pktin;
hp_pkt_out pktout;
transferbuffer[0]=0x0;
transferbuffer[1]=cmd;
pktin.buffer=transferbuffer;
pktin.size=2;
pktout.buffer=out_buffer;
pktout.size=sizeof(out_buffer);
// pktout.size=PRIME_RAW_HID_DATA_SIZE+16;
if (!submit_sync_transfer(handle,&pktin,&pktout)) {
return 0;
}
return 1;
}
int hpusb::hp_close(hp_Handle * handle)
{
if (handle) {
if (handle->dev_open) {
libusb_release_interface(handle->usbhandle, 0);
libusb_close(handle->usbhandle);
handle->dev_open =0;
}
}
return 0;
}
// debugging function to display libusb_transfer
void hpusb::print_libusb_transfer(struct libusb_transfer *p_t)
{ int i;
if ( NULL == p_t){
log("No libusb_transfer...\n");
}
else {
log("libusb_transfer structure:\n");
log(QString().sprintf("flags =%x \n", p_t->flags));
log(QString().sprintf("endpoint=%x \n", p_t->endpoint));
log(QString().sprintf("type =%x \n", p_t->type));
log(QString().sprintf("timeout =%d \n", p_t->timeout));
// length, and buffer are commands sent to the device
log(QString().sprintf("length =%d \n", p_t->length));
log(QString().sprintf("actual_length =%d \n", p_t->actual_length));
log(QString().sprintf("buffer =%p \n", p_t->buffer));
for (i=0; i < p_t->length; i++){
log(QString().sprintf(" %x", i, p_t->buffer[i]));
}
}
return;
}
2019-02-10 14:32:15 +01:00
2019-02-10 14:43:00 +01:00
hpusb::~hpusb() {
libusb_exit(ctx);
2019-02-10 14:32:15 +01:00
}