PrimeFORTH/FORTH.py

452 lines
14 KiB
Python
Raw Normal View History

#PYTHON name
#
# forth.py
#
import sys, math
import hpprime
import graphic
import urandom
if sys.version > '3' : raw_input = input # for both 2.7 and 3.0+
ds = [] # The data stack
cStack = [] # The control struct stack
heap = [0]*2048 # The data heap
heapNext = 0 # Next avail slot in heap
words = [] # The input stream of tokens
colour = 0x0000ff
background = 0xffffff
initCode = """: cr 10 emit ; : abs dup 0 < if 0 swap - then ; : constant create , does> @ ; : variable create 1 allot ; : +! DUP @ ROT + SWAP ! ;
: 2DUP OVER OVER ; : 2DROP DROP DROP ; : NIP SWAP DROP ; : 2NIP 2SWAP 2DROP ; : TUCK SWAP OVER ;
: BL 32 ; : CR 10 EMIT ; : SPACE BL EMIT ; : NEGATE 0 SWAP - ; : DNEGATE 0. 2SWAP D- ; : CELLS CELL * ; : TRUE -1 ; : FALSE 0 ;
: 0= 0 = ; : 0< 0 < ; : 0> 0 > ; : <= > 0= ; : >= < 0= ; : 0<= 0 <= ; : 0>= 0 >= ; : 1- 1 - ;
: 2+ 2 + ; : 2- 2 - ; : 2/ 2 / ; : 2* 2 * ; : MIN 2DUP < IF DROP ELSE NIP THEN ; : MAX 2DUP > IF DROP ELSE NIP THEN ; : D0= OR 0= ; 1 constant CELL
"""
def main() :
global words, initCode
if len(sys.argv) > 1 :
initCode = open(sys.argv[1]).read() # load start file
hpprime.eval("PRINT") # clear terminal screen
print("Prime FORTH 1.0")
while True :
pcode = compile() # compile/run from user
if pcode == None : print(""); return
execute(pcode)
#============================== Lexical Parsing
def getWord (prompt="... ") :
global words, initCode
while not words :
try :
if initCode : lin = initCode; initCode=""
else :
lin = raw_input(prompt)+" "
print(lin)
except : return None
tokenizeWords(lin)
word = words[0]
if word == "bye" : return None
words = words[1:]
return word
def tokenizeWords(s) :
global words # clip comments, split to list of words
words += s.lower().split() # Use "#" for comment to end of line
#================================= Runtime operation
def execute (code) :
p = 0
while p < len(code) :
func = code[p]
p += 1
newP = func(code,p)
if newP != None : p = newP
def rAdd (cod,p) : b=ds.pop(); a=ds.pop(); ds.append(a+b)
def rFloor (cod,p) : a=ds.pop(); ds.append(math.floor(a))
def rMod (cod,p) : b=ds.pop(); a=ds.pop(); ds.append(a%b)
def rOneplus (cod,p) : a=ds.pop(); ds.append(a+1)
def rOr (cod,p) : b=ds.pop(); a=ds.pop(); ds.append(a|b)
def rAnd (cod,p) : b=ds.pop(); a=ds.pop(); ds.append(a&b)
def rMul (cod,p) : b=ds.pop(); a=ds.pop(); ds.append(a*b)
def rSub (cod,p) : b=ds.pop(); a=ds.pop(); ds.append(a-b)
def rDiv (cod,p) : b=ds.pop(); a=ds.pop(); ds.append(a/b)
def rEq (cod,p) : b=ds.pop(); a=ds.pop(); ds.append(int(a==b))
def rPixon (cod,p) : y=ds.pop(); x=ds.pop(); hpprime.pixon(0,x,y,colour)
def rPixon2 (cod,p) :
y=ds.pop();
if y > 0 : y = y * 2 + 1
x=ds.pop()
if x > 0 : x = x * 2 + 1
hpprime.pixon(0,x,y,colour);
hpprime.pixon(0,x+1,y,colour);
hpprime.pixon(0,x,y+1,colour);
hpprime.pixon(0,x+1,y+1,colour)
def rPixon4 (cod,p) :
y=ds.pop();
if y > 0 : y = y * 4 + 1
x=ds.pop()
if x > 0 : x = x * 4 + 1
hpprime.fillrect(0,x,y,4, 4, colour, colour);
def rGetpix (cod,p) : y=ds.pop(); x=ds.pop(); ds.append(hpprime.eval("getpix_p({},{})".format(x,y)))
def rGetpix2 (cod,p) :
y=ds.pop();
if y > 0 : y = y * 2 + 1
x=ds.pop()
if x > 0 : x = x * 2 + 1
ds.append(hpprime.eval("getpix_p({},{})".format(x,y)))
def rGetpix4 (cod,p) :
y=ds.pop();
if y > 0 : y = y * 4 + 1
x=ds.pop()
if x > 0 : x = x * 4 + 1
ds.append(hpprime.eval("getpix_p({},{})".format(x,y)))
def rLastkey (cod,p) : ds.append(int(hpprime.eval("getkey")))
def rKey (cod,p) :
while 1:
k = hpprime.eval("getkey")
if k != -1 : break
ds.append(int(k))
def rTicks (cod,p) : ds.append(int(hpprime.eval("ticks")))
def rLine (cod,p) : y2=ds.pop(); x2=ds.pop(); y1=ds.pop(); x1=ds.pop(); hpprime.line(0,x1,y1,x2, y2, colour)
def rRect (cod,p) : h=ds.pop(); w=ds.pop(); y=ds.pop(); x=ds.pop(); hpprime.rect(0,x,y,w, h, colour)
def rFillrect (cod,p) : h=ds.pop(); w=ds.pop(); y=ds.pop(); x=ds.pop(); hpprime.fillrect(0,x,y,w, h, colour, colour)
def rCircle (cod,p) : rad=ds.pop(); y=ds.pop(); x=ds.pop(); hpprime.circle(0,x,y,rad, colour)
def rCol (cod,p) : global colour ; colour = ds.pop()
def rGetcol (cod,p) : global colour; ds.append(colour)
def rBg (cod,p) : global background; background = ds.pop()
def rShow (cod,p) : graphic.show()
def rList (cod,p) :
fname = getWord()+".fth";
try:
f = open(fname, "r")
print(f.read(), end=''); f.close()
except:
print(fname+": does not exist")
def rLoad (cod,p) :
global initCode
fname = getWord()+".fth"
try:
f = open(fname, "r")
initCode = f.read()
f.close()
except:
print(fname+": does not exist")
def rSleep (cod,p) : a=ds.pop()/1000; hpprime.eval("wait({})".format(a))
def rNeq (cod,p) : b=ds.pop(); a=ds.pop(); ds.append(int(a!=b))
def rGt (cod,p) : b=ds.pop(); a=ds.pop(); ds.append(int(a>b))
def rLt (cod,p) : b=ds.pop(); a=ds.pop(); ds.append(int(a<b))
def rLtE (cod,p) : b=ds.pop(); a=ds.pop(); ds.append(int(a<=b))
def rSqr (cod,p) : a=ds.pop(); ds.append(math.sqrt(a))
def rCos (cod,p) : a=ds.pop(); ds.append(math.cos(a))
def rRandom (cod,p) : a=ds.pop(); ds.append(urandom.randint(0,a-1))
def rSwap(cod,p) : a=ds.pop(); b=ds.pop(); ds.append(a); ds.append(b)
def rRot(cod,p) : a=ds.pop(); b=ds.pop(); c=ds.pop(); ds.append(b); ds.append(a); ds.append(c)
def rDup (cod,p) : ds.append(ds[-1])
def rDrop(cod,p) : ds.pop()
def rOver(cod,p) : ds.append(ds[-2])
def rDump(cod,p) : print("ds = %s" % ds)
def rDdump(cod,p) : print(rDict)
def rIdump(cod,p) : print(imDict)
def rDot (cod,p) : print(ds.pop(),end=' ')
def rEmit (cod,p) : print(chr(ds.pop()&255),end='')
def rHere(cod,p) : ds.append(heapNext)
def rJmp (cod,p) : return cod[p]
def rJnz (cod,p) : return (cod[p],p+1)[ds.pop()]
def rJz (cod,p) : return (p+1,cod[p])[ds.pop()==0]
def rRun (cod,p) :
if cod[p] in rDict:
execute(rDict[cod[p]])
else:
print(cod[p]," unknown")
return p+1
def rPush(cod,p) : ds.append(cod[p]) ; return p+1
def rCls(cod,p) : graphic.clear_screen(background); hpprime.eval("print")
def rSin(cod,p) : a=ds.pop(); ds.append(math.sin(a))
def rCos(cod,p) : a=ds.pop(); ds.append(math.cos(a))
def rTan(cod,p) : a=ds.pop(); ds.append(math.tan(a))
def rAsin(cod,p) : a=ds.pop(); ds.append(math.asin(a))
def rAcos(cod,p) : a=ds.pop(); ds.append(math.acos(a))
def rAtan(cod,p) : a=ds.pop(); ds.append(math.atan(a))
def rSqrt(cod,p) : a=ds.pop(); ds.append(math.sqrt(a))
def rgtR(cod,p) :
a=ds.pop()
cStack.append(("NUMBER",a))
def rRgt(cod,p) :
name,value=cStack.pop()
ds.append(value)
def rRat(cod,p) :
name,value = cStack.pop()
cStack.append((name,value))
ds.append(value)
def rJ (cod,p) :
c1,t1 = cStack.pop()
c2,t2 = cStack.pop()
c3,t3 = cStack.pop()
cStack.append((c3,t3))
cStack.append((c2,t2))
cStack.append((c1,t1))
ds.append(t3)
def rWord (cod,p) :
word=getWord()
for c in word :
ds.append(ord(c))
ds.append(len(word))
def rType (cod,p) :
len = ds.pop()
addr = ds.pop()
print("addr ",addr,len)
for i in range(0, len) :
print(chr(heap[addr+i]&0x7f),end="")
def rImmediate(cod,p) :
imDict[list(rDict.keys())[-1]] = 1
def rWords(cod,p) :
for k in sorted(list(rDict.keys())): print(k,end=' ')
def rCreate (pcode,p) :
global heapNext, lastCreate
lastCreate = label = getWord() # match next word (input) to next heap address
rDict[label] = [rPush, heapNext] # when created word is run, pushes its address
def rDoes (cod,p) :
rDict[lastCreate] += cod[p:] # rest of words belong to created words runtime
return len(cod) # jump p over these
def rAllot (cod,p) :
global heapNext
heapNext += ds.pop() # reserve n words for last create
def rAt (cod,p) : ds.append(heap[ds.pop()]) # get heap @ address
def rBang(cod,p) : a=ds.pop(); heap[a] = ds.pop() # set heap @ address
def rComa(cod,p) : # push tos into heap
global heapNext
heap[heapNext]=ds.pop()
heapNext += 1
rDict = {
'+' : rAdd, '-' : rSub, '/' : rDiv, '*' : rMul, 'over': rOver,
'dup': rDup, 'swap': rSwap, '.': rDot, 'dump' : rDump, 'drop': rDrop,
'=' : rEq, '>' : rGt, '<': rLt,
',' : rComa,'@' : rAt, '!' : rBang,'allot': rAllot,
'create': rCreate, 'does>': rDoes,
'or' : rOr,
'and' : rAnd,
'emit' : rEmit,
'<>' : rNeq,
'here' : rHere,
'rot' : rRot,
'pixon' : rPixon,
'pixon2' : rPixon2,
'pixon4' : rPixon4,
'getpix' : rGetpix,
'getpix2' : rGetpix2,
'getpix4' : rGetpix4,
'key' : rKey,
'lastkey' : rLastkey,
'ticks' : rTicks,
'line' : rLine,
'rect' : rRect,
'fillrect' : rFillrect,
'circle' : rCircle,
'sleep' : rSleep,
'cls' : rCls,
'col' : rCol,
'getcol' : rGetcol,
'bg' : rBg,
'show' : rShow,
'list' : rList,
'load' : rLoad,
'<>' : rNeq,
'here' : rHere,
'rot' : rRot,
'sin' : rSin,
'cos' : rCos,
'random' : rRandom,
'tan' : rTan,
'asin' : rAsin,
'acos' : rAcos,
'atan' : rAtan,
'sqrt' : rSqrt,
'words' : rWords,
'R@' : rRat,
'1+' : rOneplus,
'>r' : rgtR,
'r>' : rRgt,
'j' : rJ,
'type' : rType,
'word' : rWord,
'ddump' : rDdump,
'idump' : rIdump,
'immediate' : rImmediate,
'lte' : rLtE,
}
#================================= Compile time
def compile() :
global ds
pcode = []; prompt = "Ok " if len(ds)==0 else "Ok: "
while 1 :
word = getWord(prompt) # get next word
if word == None : return None
cAct = cDict.get(word) # Is there a compile time action ?
rAct = rDict.get(word) # Is there a runtime action ?
if cAct : cAct(pcode) # run at compile time
elif rAct :
if type(rAct) == type([]) :
pcode.append(rRun) # Compiled word.
pcode.append(word) # for now do dynamic lookup
else : pcode.append(rAct) # push builtin for runtime
else :
# Number to be pushed onto ds at runtime
pcode.append(rPush)
try : pcode.append(int(word))
except :
try: pcode.append(float(word))
except :
pcode[-1] = rRun # Change rPush to rRun
pcode.append(word) # Assume word will be defined
if not cStack : return pcode
prompt = "... "
def fatal (mesg) : raise mesg
def cColon (pcode) :
if cStack : fatal(": inside Control stack: %s" % cStack)
label = getWord()
cStack.append(("COLON",label)) # flag for following ";"
def cSemi (pcode) :
if not cStack : fatal("No : for ; to match")
code,label = cStack.pop()
if code != "COLON" : fatal(": not balanced with ;")
rDict[label] = pcode[:] # Save word definition in rDict
while pcode : pcode.pop()
def cBegin (pcode) :
cStack.append(("BEGIN",len(pcode))) # flag for following UNTIL
def cUntil (pcode) :
if not cStack : fatal("No BEGIN for UNTIL to match")
code,slot = cStack.pop()
if code != "BEGIN" : fatal("UNTIL preceded by %s (not BEGIN)" % code)
pcode.append(rJz)
pcode.append(slot)
def cWhile (pcode) :
if not cStack : fatal("No BEGIN for WHILE to match")
pcode.append(rJz)
def cRepeat (pcode) :
if not cStack : fatal("No BEGIN for REPEAT to match")
def cDo (pcode) :
cStack.append(("DO",len(pcode))) # flag for following UNTIL
pcode.append(rSwap)
pcode.append(rgtR)
pcode.append(rgtR)
def cLoop (pcode) :
if not cStack : fatal("No DO for LOOP to match")
code,slot = cStack.pop()
if code != "DO" : fatal("LOOP preceded by %s (not DO)" % code)
pcode.append(rRgt)
pcode.append(rRgt)
pcode.append(rSwap)
pcode.append(rOneplus)
pcode.append(rOver)
pcode.append(rOver)
pcode.append(rEq)
pcode.append(rJz)
pcode.append(slot)
pcode.append(rDrop)
pcode.append(rDrop)
def cLoopPlus (pcode) :
if not cStack : fatal("No DO for LOOP to match")
code,slot = cStack.pop()
if code != "DO" : fatal("+LOOP preceded by %s (not DO)" % code)
pcode.append(rRgt)
pcode.append(rRgt)
pcode.append(rSwap)
pcode.append(rRot)
pcode.append(rAdd)
pcode.append(rOver)
pcode.append(rOver)
pcode.append(rSwap)
pcode.append(rLt)
pcode.append(rJz)
pcode.append(slot)
pcode.append(rDrop)
pcode.append(rDrop)
def cI (pcode) :
pcode.append(rRat)
def cJ (pcode) :
pcode.append(rRgt)
pcode.append(rRgt)
pcode.append(rRgt)
pcode.append(rDup)
pcode.append(rgtR)
pcode.append(rSwap)
pcode.append(rgtR)
pcode.append(rSwap)
pcode.append(rgtR)
def cIf (pcode) :
pcode.append(rJz)
cStack.append(("IF",len(pcode))) # flag for following Then or Else
pcode.append(0) # slot to be filled in
def cElse (pcode) :
if not cStack : fatal("No IF for ELSE to match")
code,slot = cStack.pop()
if code != "IF" : fatal("ELSE preceded by %s (not IF)" % code)
pcode.append(rJmp)
cStack.append(("ELSE",len(pcode))) # flag for following THEN
pcode.append(0) # slot to be filled in
pcode[slot] = len(pcode) # close JZ for IF
def cThen (pcode) :
if not cStack : fatal("No IF or ELSE for THEN to match")
code,slot = cStack.pop()
if code not in ("IF","ELSE") : fatal("THEN preceded by %s (not IF or ELSE)" % code)
pcode[slot] = len(pcode) # close JZ for IF or JMP for ELSE
cDict = {
':' : cColon, ';' : cSemi, 'if': cIf, 'else': cElse, 'then': cThen,
'begin': cBegin, 'until': cUntil,
'do': cDo, 'loop': cLoop, '+loop' : cLoopPlus, 'i' : cI , 'j' : cJ , 'while' : cWhile, 'repeat' : cRepeat,
}
if __name__ == "__main__" : main()
#END
EXPORT FORTH()
BEGIN
PYTHON(name);
END;